These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
182 related articles for article (PubMed ID: 25348682)
21. Combining Precursor and Fragment Information for Improved Detection of Differential Abundance in Data Independent Acquisition. Huang T; Bruderer R; Muntel J; Xuan Y; Vitek O; Reiter L Mol Cell Proteomics; 2020 Feb; 19(2):421-430. PubMed ID: 31888964 [TBL] [Abstract][Full Text] [Related]
22. Cost-effective generation of precise label-free quantitative proteomes in high-throughput by microLC and data-independent acquisition. Vowinckel J; Zelezniak A; Bruderer R; Mülleder M; Reiter L; Ralser M Sci Rep; 2018 Mar; 8(1):4346. PubMed ID: 29531254 [TBL] [Abstract][Full Text] [Related]
23. Impact of data-dependent exclusion list based mass spectrometry on label-free proteomic quantification. Yeom J; Kabir MH; Lee C Rapid Commun Mass Spectrom; 2015 Jan; 29(1):128-34. PubMed ID: 25462373 [TBL] [Abstract][Full Text] [Related]
24. Biomedical applications of ion mobility-enhanced data-independent acquisition-based label-free quantitative proteomics. Distler U; Kuharev J; Tenzer S Expert Rev Proteomics; 2014 Dec; 11(6):675-84. PubMed ID: 25327648 [TBL] [Abstract][Full Text] [Related]
25. Isotope coded protein label quantification of serum proteins--comparison with the label-free LC-MS and validation using the MRM approach. Turtoi A; Mazzucchelli GD; De Pauw E Talanta; 2010 Feb; 80(4):1487-95. PubMed ID: 20082806 [TBL] [Abstract][Full Text] [Related]
26. Comparative evaluation of label-free SINQ normalized spectral index quantitation in the central proteomics facilities pipeline. Trudgian DC; Ridlova G; Fischer R; Mackeen MM; Ternette N; Acuto O; Kessler BM; Thomas B Proteomics; 2011 Jul; 11(14):2790-7. PubMed ID: 21656681 [TBL] [Abstract][Full Text] [Related]
27. Quantification of proteins by label-free LC-MS(E.). Savidor A; Levin Y Methods Mol Biol; 2014; 1156():223-36. PubMed ID: 24791992 [TBL] [Abstract][Full Text] [Related]
28. Quantitation of soybean allergens using tandem mass spectrometry. Houston NL; Lee DG; Stevenson SE; Ladics GS; Bannon GA; McClain S; Privalle L; Stagg N; Herouet-Guicheney C; MacIntosh SC; Thelen JJ J Proteome Res; 2011 Feb; 10(2):763-73. PubMed ID: 21141899 [TBL] [Abstract][Full Text] [Related]
29. Qualitative and Quantitative Shotgun Proteomics Data Analysis from Data-Dependent Acquisition Mass Spectrometry. Meyer JG Methods Mol Biol; 2021; 2259():297-308. PubMed ID: 33687723 [TBL] [Abstract][Full Text] [Related]
30. Comparison of liquid chromatography-tandem mass spectrometry-based targeted proteomics and conventional analytical methods for the determination of P-glycoprotein in human breast cancer cells. Yang T; Xu F; Xu J; Fang D; Yu Y; Chen Y J Chromatogr B Analyt Technol Biomed Life Sci; 2013 Oct; 936():18-24. PubMed ID: 23968647 [TBL] [Abstract][Full Text] [Related]
31. Data-independent acquisition-based SWATH-MS for quantitative proteomics: a tutorial. Ludwig C; Gillet L; Rosenberger G; Amon S; Collins BC; Aebersold R Mol Syst Biol; 2018 Aug; 14(8):e8126. PubMed ID: 30104418 [TBL] [Abstract][Full Text] [Related]
32. Robust and High-Throughput Analytical Flow Proteomics Analysis of Cynomolgus Monkey and Human Matrices With Zeno SWATH Data-Independent Acquisition. Sun W; Lin Y; Huang Y; Chan J; Terrillon S; Rosenbaum AI; Contrepois K Mol Cell Proteomics; 2023 Jun; 22(6):100562. PubMed ID: 37142056 [TBL] [Abstract][Full Text] [Related]