These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

182 related articles for article (PubMed ID: 25348682)

  • 21. Combining Precursor and Fragment Information for Improved Detection of Differential Abundance in Data Independent Acquisition.
    Huang T; Bruderer R; Muntel J; Xuan Y; Vitek O; Reiter L
    Mol Cell Proteomics; 2020 Feb; 19(2):421-430. PubMed ID: 31888964
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Cost-effective generation of precise label-free quantitative proteomes in high-throughput by microLC and data-independent acquisition.
    Vowinckel J; Zelezniak A; Bruderer R; Mülleder M; Reiter L; Ralser M
    Sci Rep; 2018 Mar; 8(1):4346. PubMed ID: 29531254
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Impact of data-dependent exclusion list based mass spectrometry on label-free proteomic quantification.
    Yeom J; Kabir MH; Lee C
    Rapid Commun Mass Spectrom; 2015 Jan; 29(1):128-34. PubMed ID: 25462373
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Biomedical applications of ion mobility-enhanced data-independent acquisition-based label-free quantitative proteomics.
    Distler U; Kuharev J; Tenzer S
    Expert Rev Proteomics; 2014 Dec; 11(6):675-84. PubMed ID: 25327648
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Isotope coded protein label quantification of serum proteins--comparison with the label-free LC-MS and validation using the MRM approach.
    Turtoi A; Mazzucchelli GD; De Pauw E
    Talanta; 2010 Feb; 80(4):1487-95. PubMed ID: 20082806
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Comparative evaluation of label-free SINQ normalized spectral index quantitation in the central proteomics facilities pipeline.
    Trudgian DC; Ridlova G; Fischer R; Mackeen MM; Ternette N; Acuto O; Kessler BM; Thomas B
    Proteomics; 2011 Jul; 11(14):2790-7. PubMed ID: 21656681
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Quantification of proteins by label-free LC-MS(E.).
    Savidor A; Levin Y
    Methods Mol Biol; 2014; 1156():223-36. PubMed ID: 24791992
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Quantitation of soybean allergens using tandem mass spectrometry.
    Houston NL; Lee DG; Stevenson SE; Ladics GS; Bannon GA; McClain S; Privalle L; Stagg N; Herouet-Guicheney C; MacIntosh SC; Thelen JJ
    J Proteome Res; 2011 Feb; 10(2):763-73. PubMed ID: 21141899
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Qualitative and Quantitative Shotgun Proteomics Data Analysis from Data-Dependent Acquisition Mass Spectrometry.
    Meyer JG
    Methods Mol Biol; 2021; 2259():297-308. PubMed ID: 33687723
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Comparison of liquid chromatography-tandem mass spectrometry-based targeted proteomics and conventional analytical methods for the determination of P-glycoprotein in human breast cancer cells.
    Yang T; Xu F; Xu J; Fang D; Yu Y; Chen Y
    J Chromatogr B Analyt Technol Biomed Life Sci; 2013 Oct; 936():18-24. PubMed ID: 23968647
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Data-independent acquisition-based SWATH-MS for quantitative proteomics: a tutorial.
    Ludwig C; Gillet L; Rosenberger G; Amon S; Collins BC; Aebersold R
    Mol Syst Biol; 2018 Aug; 14(8):e8126. PubMed ID: 30104418
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Robust and High-Throughput Analytical Flow Proteomics Analysis of Cynomolgus Monkey and Human Matrices With Zeno SWATH Data-Independent Acquisition.
    Sun W; Lin Y; Huang Y; Chan J; Terrillon S; Rosenbaum AI; Contrepois K
    Mol Cell Proteomics; 2023 Jun; 22(6):100562. PubMed ID: 37142056
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Shotgun proteomics: a relative quantitative approach using Off-Gel electrophoresis and LC-MS/MS.
    Geiser L; Dayon L; Vaezzadeh AR; Hochstrasser DF
    Methods Mol Biol; 2011; 681():459-72. PubMed ID: 20978983
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Label-Free Quantitation for Clinical Proteomics.
    Moulder R; Goo YA; Goodlett DR
    Methods Mol Biol; 2016; 1410():65-76. PubMed ID: 26867738
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Next Generation Proteomics for Clinical Biomarker Detection Using SWATH-MS.
    Lin Q; Tan HT; Chung MCM
    Methods Mol Biol; 2019; 1977():3-15. PubMed ID: 30980318
    [TBL] [Abstract][Full Text] [Related]  

  • 36. In-depth comparative proteomic analysis of yeast proteome using iTRAQ and SWATH based MS.
    Basak T; Bhat A; Malakar D; Pillai M; Sengupta S
    Mol Biosyst; 2015 Aug; 11(8):2135-43. PubMed ID: 26099114
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Protein Quantitation of the Developing Cochlea Using Mass Spectrometry.
    Darville LN; Sokolowski BH
    Methods Mol Biol; 2016; 1427():135-48. PubMed ID: 27259925
    [TBL] [Abstract][Full Text] [Related]  

  • 38. specL--an R/Bioconductor package to prepare peptide spectrum matches for use in targeted proteomics.
    Panse C; Trachsel C; Grossmann J; Schlapbach R
    Bioinformatics; 2015 Jul; 31(13):2228-31. PubMed ID: 25712692
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Sequential Windowed Acquisition of Reporter Masses for Quantitation-First Proteomics.
    Barshop WD; Rayatpisheh S; Kim HJ; Wohlschlegel JA
    J Proteome Res; 2019 Apr; 18(4):1893-1901. PubMed ID: 30781952
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Why less is more when generating tryptic peptides in bottom-up proteomics.
    Hildonen S; Halvorsen TG; Reubsaet L
    Proteomics; 2014 Sep; 14(17-18):2031-41. PubMed ID: 25044798
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.