These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

331 related articles for article (PubMed ID: 25349028)

  • 1. Chemical reactivity and band-gap opening of graphene doped with gallium, germanium, arsenic, and selenium atoms.
    Denis PA
    Chemphyschem; 2014 Dec; 15(18):3994-4000. PubMed ID: 25349028
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Is it possible to dope single-walled carbon nanotubes and graphene with sulfur?
    Denis PA; Faccio R; Mombru AW
    Chemphyschem; 2009 Mar; 10(4):715-22. PubMed ID: 19189365
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The effect of the dopant nature on the reactivity, interlayer bonding and electronic properties of dual doped bilayer graphene.
    Denis PA; Iribarne F
    Phys Chem Chem Phys; 2016 Sep; 18(35):24693-703. PubMed ID: 27545204
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Opening the band gap of graphene through silicon doping for the improved performance of graphene/GaAs heterojunction solar cells.
    Zhang SJ; Lin SS; Li XQ; Liu XY; Wu HA; Xu WL; Wang P; Wu ZQ; Zhong HK; Xu ZJ
    Nanoscale; 2016 Jan; 8(1):226-32. PubMed ID: 26646647
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Tailoring the electronic structure of β-Ga2O3 by non-metal doping from hybrid density functional theory calculations.
    Guo W; Guo Y; Dong H; Zhou X
    Phys Chem Chem Phys; 2015 Feb; 17(8):5817-25. PubMed ID: 25629632
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Functionalization of a GaSe monolayer by vacancy and chemical element doping.
    Ao L; Xiao HY; Xiang X; Li S; Liu KZ; Huang H; Zu XT
    Phys Chem Chem Phys; 2015 Apr; 17(16):10737-48. PubMed ID: 25811299
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Chemical nature of boron and nitrogen dopant atoms in graphene strongly influences its electronic properties.
    Lazar P; Zbořil R; Pumera M; Otyepka M
    Phys Chem Chem Phys; 2014 Jul; 16(27):14231-5. PubMed ID: 24912566
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Rules of boron-nitrogen doping in defect graphene sheets: a first-principles investigation of band-gap tuning and oxygen reduction reaction catalysis capabilities.
    Sen D; Thapa R; Chattopadhyay KK
    Chemphyschem; 2014 Aug; 15(12):2542-9. PubMed ID: 24910355
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Charge compensation in trivalent cation doped bulk rutile TiO2.
    Iwaszuk A; Nolan M
    J Phys Condens Matter; 2011 Aug; 23(33):334207. PubMed ID: 21813953
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sheet Resistance Analysis of Interface-Engineered Multilayer Graphene: Mobility Versus Sheet Carrier Concentration.
    Kim MS; Kim M; Son S; Cho SY; Lee S; Won DK; Ryu J; Bae I; Kim HM; Kim KB
    ACS Appl Mater Interfaces; 2020 Jul; 12(27):30932-30940. PubMed ID: 32400151
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Band gap opening of bilayer graphene by F4-TCNQ molecular doping and externally applied electric field.
    Tian X; Xu J; Wang X
    J Phys Chem B; 2010 Sep; 114(35):11377-81. PubMed ID: 20690622
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Opening an electrical band gap of bilayer graphene with molecular doping.
    Zhang W; Lin CT; Liu KK; Tite T; Su CY; Chang CH; Lee YH; Chu CW; Wei KH; Kuo JL; Li LJ
    ACS Nano; 2011 Sep; 5(9):7517-24. PubMed ID: 21819152
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Opening a band gap without breaking lattice symmetry: a new route toward robust graphene-based nanoelectronics.
    Kou L; Hu F; Yan B; Frauenheim T; Chen C
    Nanoscale; 2014 Jul; 6(13):7474-9. PubMed ID: 24881864
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Band gap engineering of chemical vapor deposited graphene by in situ BN doping.
    Chang CK; Kataria S; Kuo CC; Ganguly A; Wang BY; Hwang JY; Huang KJ; Yang WH; Wang SB; Chuang CH; Chen M; Huang CI; Pong WF; Song KJ; Chang SJ; Guo JH; Tai Y; Tsujimoto M; Isoda S; Chen CW; Chen LC; Chen KH
    ACS Nano; 2013 Feb; 7(2):1333-41. PubMed ID: 23273110
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Band gap opening in silicene on MgBr2(0001) induced by Li and Na.
    Zhu J; Schwingenschlögl U
    ACS Appl Mater Interfaces; 2014 Nov; 6(21):19242-6. PubMed ID: 25347363
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Graphene/g-C3N4 bilayer: considerable band gap opening and effective band structure engineering.
    Li X; Dai Y; Ma Y; Han S; Huang B
    Phys Chem Chem Phys; 2014 Mar; 16(9):4230-5. PubMed ID: 24452306
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Exceptional charge transport properties of graphene on germanium.
    Cavallo F; Rojas Delgado R; Kelly MM; Sánchez Pérez JR; Schroeder DP; Xing HG; Eriksson MA; Lagally MG
    ACS Nano; 2014 Oct; 8(10):10237-45. PubMed ID: 25203974
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Theoretical Characterization of Germanene Doped with Main Group Elements.
    Denis PA; Laranjeira JAS; Sambrano JR
    Chemphyschem; 2024 Jun; 25(12):e202400139. PubMed ID: 38523079
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Electronic transport properties of graphene doped by gallium.
    Mach J; Procházka P; Bartošík M; Nezval D; Piastek J; Hulva J; Švarc V; Konečný M; Kormoš L; Šikola T
    Nanotechnology; 2017 Oct; 28(41):415203. PubMed ID: 28813368
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Molecular doping and band-gap opening of bilayer graphene.
    Samuels AJ; Carey JD
    ACS Nano; 2013 Mar; 7(3):2790-9. PubMed ID: 23414110
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.