These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

203 related articles for article (PubMed ID: 25349072)

  • 1. A transcutaneous energy transmission system for artificial heart adapting to changing impedance.
    Fu Y; Hu L; Ruan X; Fu X
    Artif Organs; 2015 Apr; 39(4):378-87. PubMed ID: 25349072
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Functions for detecting malposition of transcutaneous energy transmission coils.
    Ozeki T; Chinzei T; Abe Y; Saito I; Isoyama T; Mochizuki S; Ishimaru M; Takiura K; Baba A; Toyama T; Imachi K
    ASAIO J; 2003; 49(4):469-74. PubMed ID: 12918593
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Optimal Design of Litz Wire Coils With Sandwich Structure Wirelessly Powering an Artificial Anal Sphincter System.
    Ke L; Yan G; Yan S; Wang Z; Li X
    Artif Organs; 2015 Jul; 39(7):615-26. PubMed ID: 25808086
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Detecting Malposition of Coil Couple for Transcutaneous Energy Transmission.
    Hu L; Fu Y; Ruan X; Xie H; Fu X
    ASAIO J; 2016; 62(1):56-62. PubMed ID: 26461239
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The re-design at the transformer portion of transcutaneous energy transmission system for all implantable devices.
    Watada M; Saisho R; Kim YJ; Ohuchi K; Takatani S; Um YS
    Annu Int Conf IEEE Eng Med Biol Soc; 2007; 2007():1035-8. PubMed ID: 18002137
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fundamental analysis and development of the current and voltage control method by changing the driving frequency for the transcutaneous energy transmission system.
    Miura H; Yamada A; Shiraishi Y; Yambe T
    Annu Int Conf IEEE Eng Med Biol Soc; 2015 Aug; 2015():1319-22. PubMed ID: 26736511
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Primary side control of load voltage for transcutaneous energy transmission.
    Fu Y; Hu L; Ruan X; Fu X
    J Artif Organs; 2016 Mar; 19(1):14-20. PubMed ID: 26432434
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Maximum achievable efficiency in near-field coupled power-transfer systems.
    Zargham M; Gulak PG
    IEEE Trans Biomed Circuits Syst; 2012 Jun; 6(3):228-45. PubMed ID: 23853145
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Adaptive transcutaneous power delivery for an artificial anal sphincter system.
    Zan P; Yan G; Liu H; Luo N; Zhao Y
    J Med Eng Technol; 2009; 33(2):136-41. PubMed ID: 19085203
    [TBL] [Abstract][Full Text] [Related]  

  • 10. In vivo performance evaluation of a transcutaneous energy and information transmission system for the total artificial heart.
    Ahn JM; Kang DW; Kim HC; Min BG
    ASAIO J; 1993; 39(3):M208-12. PubMed ID: 8268530
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Development of an autotuned transcutaneous energy transfer system.
    Miller JA; Bélanger G; Mussivand T
    ASAIO J; 1993; 39(3):M706-10. PubMed ID: 8268629
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Inductive coupling links for lowest misalignment effects in transcutaneous implanted devices.
    Abbas SM; Hannan MA; Samad SA; Hussain A
    Biomed Tech (Berl); 2014 Jun; 59(3):257-68. PubMed ID: 24445231
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Impedance matching wireless power transmission system for biomedical devices.
    Lum KY; Lindén M; Tan TS
    Stud Health Technol Inform; 2015; 211():225-32. PubMed ID: 25980873
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The effects of metals on a transcutaneous energy transmission system.
    Geselowitz DB; Hoang QT; Gaumond RP
    IEEE Trans Biomed Eng; 1992 Sep; 39(9):928-34. PubMed ID: 1473821
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A new control method depending on primary phase angle of transcutaneous energy transmission system for artificial heart.
    Miura H; Saito I; Sato F; Shiraishi Y; Yambe T; Matsuki H
    Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():5723-6. PubMed ID: 24111037
    [TBL] [Abstract][Full Text] [Related]  

  • 16. In vivo performance of a transcutaneous energy transmission system with the Penn State motor driven ventricular assist device.
    Weiss WJ; Rosenberg G; Snyder AJ; Pae WE; Richenbacher WE; Pierce WS
    ASAIO Trans; 1989; 35(3):284-8. PubMed ID: 2597465
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A study on an energy supply method for a transcutaneous energy transmission system.
    Ozeki T; Chinzei T; Abe Y; Saito I; Isoyama T; Ono T; Kouno A; Ishimaru M; Takiura K; Baba A; Toyama T; Imachi K
    Artif Organs; 2003 Jan; 27(1):68-72. PubMed ID: 12534715
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A programmable and self-adjusting class E amplifier for efficient wireless powering of biomedical implants.
    Stoecklin S; Volk T; Yousaf A; Reindl L
    Annu Int Conf IEEE Eng Med Biol Soc; 2015; 2015():3193-6. PubMed ID: 26736971
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Improvement of wireless power transmission efficiency of implantable subcutaneous devices by closed magnetic circuit mechanism.
    Jo SE; Joung S; Suh JK; Kim YJ
    Med Biol Eng Comput; 2012 Sep; 50(9):973-80. PubMed ID: 22806430
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Safety considerations for wireless delivery of continuous power to implanted medical devices.
    Lucke L; Bluvshtein V
    Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():286-9. PubMed ID: 25569953
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.