BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

305 related articles for article (PubMed ID: 25349124)

  • 1. Mechanistic understanding of translational pharmacokinetic-pharmacodynamic relationships in nonclinical tumor models: a case study of orally available novel inhibitors of anaplastic lymphoma kinase.
    Yamazaki S; Lam JL; Zou HY; Wang H; Smeal T; Vicini P
    Drug Metab Dispos; 2015 Jan; 43(1):54-62. PubMed ID: 25349124
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Translational pharmacokinetic-pharmacodynamic modeling for an orally available novel inhibitor of anaplastic lymphoma kinase and c-Ros oncogene 1.
    Yamazaki S; Lam JL; Zou HY; Wang H; Smeal T; Vicini P
    J Pharmacol Exp Ther; 2014 Oct; 351(1):67-76. PubMed ID: 25073473
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Pharmacokinetic/pharmacodynamic modeling of crizotinib for anaplastic lymphoma kinase inhibition and antitumor efficacy in human tumor xenograft mouse models.
    Yamazaki S; Vicini P; Shen Z; Zou HY; Lee J; Li Q; Christensen JG; Smith BJ; Shetty B
    J Pharmacol Exp Ther; 2012 Mar; 340(3):549-57. PubMed ID: 22129595
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Discovery of (10R)-7-amino-12-fluoro-2,10,16-trimethyl-15-oxo-10,15,16,17-tetrahydro-2H-8,4-(metheno)pyrazolo[4,3-h][2,5,11]-benzoxadiazacyclotetradecine-3-carbonitrile (PF-06463922), a macrocyclic inhibitor of anaplastic lymphoma kinase (ALK) and c-ros oncogene 1 (ROS1) with preclinical brain exposure and broad-spectrum potency against ALK-resistant mutations.
    Johnson TW; Richardson PF; Bailey S; Brooun A; Burke BJ; Collins MR; Cui JJ; Deal JG; Deng YL; Dinh D; Engstrom LD; He M; Hoffman J; Hoffman RL; Huang Q; Kania RS; Kath JC; Lam H; Lam JL; Le PT; Lingardo L; Liu W; McTigue M; Palmer CL; Sach NW; Smeal T; Smith GL; Stewart AE; Timofeevski S; Zhu H; Zhu J; Zou HY; Edwards MP
    J Med Chem; 2014 Jun; 57(11):4720-44. PubMed ID: 24819116
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Translational pharmacokinetic-pharmacodynamic modeling from nonclinical to clinical development: a case study of anticancer drug, crizotinib.
    Yamazaki S
    AAPS J; 2013 Apr; 15(2):354-66. PubMed ID: 23250669
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Crizotinib: a new treatment option for ALK-positive non-small cell lung cancer.
    O'Bryant CL; Wenger SD; Kim M; Thompson LA
    Ann Pharmacother; 2013 Feb; 47(2):189-97. PubMed ID: 23386065
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Crizotinib, a small-molecule dual inhibitor of the c-Met and ALK receptor tyrosine kinases.
    Rodig SJ; Shapiro GI
    Curr Opin Investig Drugs; 2010 Dec; 11(12):1477-90. PubMed ID: 21154129
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Development of potent ALK inhibitor and its molecular inhibitory mechanism against NSCLC harboring EML4-ALK proteins.
    Kang CH; Yun JI; Lee K; Lee CO; Lee HK; Yun CS; Hwang JY; Cho SY; Jung H; Kim P; Ha JD; Jeon JH; Choi SU; Jeong HG; Kim HR; Park CH
    Biochem Biophys Res Commun; 2015 Aug; 464(3):762-7. PubMed ID: 26168728
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Antitumor activity of alectinib, a selective ALK inhibitor, in an ALK-positive NSCLC cell line harboring G1269A mutation: Efficacy of alectinib against ALK G1269A mutated cells.
    Yoshimura Y; Kurasawa M; Yorozu K; Puig O; Bordogna W; Harada N
    Cancer Chemother Pharmacol; 2016 Mar; 77(3):623-8. PubMed ID: 26849637
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The selective anaplastic lymphoma receptor tyrosine kinase inhibitor ASP3026 induces tumor regression and prolongs survival in non-small cell lung cancer model mice.
    Mori M; Ueno Y; Konagai S; Fushiki H; Shimada I; Kondoh Y; Saito R; Mori K; Shindou N; Soga T; Sakagami H; Furutani T; Doihara H; Kudoh M; Kuromitsu S
    Mol Cancer Ther; 2014 Feb; 13(2):329-40. PubMed ID: 24419060
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Amphiregulin triggered epidermal growth factor receptor activation confers in vivo crizotinib-resistance of EML4-ALK lung cancer and circumvention by epidermal growth factor receptor inhibitors.
    Taniguchi H; Takeuchi S; Fukuda K; Nakagawa T; Arai S; Nanjo S; Yamada T; Yamaguchi H; Mukae H; Yano S
    Cancer Sci; 2017 Jan; 108(1):53-60. PubMed ID: 27783866
    [TBL] [Abstract][Full Text] [Related]  

  • 12. CEP-28122, a highly potent and selective orally active inhibitor of anaplastic lymphoma kinase with antitumor activity in experimental models of human cancers.
    Cheng M; Quail MR; Gingrich DE; Ott GR; Lu L; Wan W; Albom MS; Angeles TS; Aimone LD; Cristofani F; Machiorlatti R; Abele C; Ator MA; Dorsey BD; Inghirami G; Ruggeri BA
    Mol Cancer Ther; 2012 Mar; 11(3):670-9. PubMed ID: 22203728
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Antitumor activity of the selective ALK inhibitor alectinib in models of intracranial metastases.
    Kodama T; Hasegawa M; Takanashi K; Sakurai Y; Kondoh O; Sakamoto H
    Cancer Chemother Pharmacol; 2014 Nov; 74(5):1023-8. PubMed ID: 25205428
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Activated MET acts as a salvage signal after treatment with alectinib, a selective ALK inhibitor, in ALK-positive non-small cell lung cancer.
    Kogita A; Togashi Y; Hayashi H; Banno E; Terashima M; De Velasco MA; Sakai K; Fujita Y; Tomida S; Takeyama Y; Okuno K; Nakagawa K; Nishio K
    Int J Oncol; 2015 Mar; 46(3):1025-30. PubMed ID: 25502629
    [TBL] [Abstract][Full Text] [Related]  

  • 15. HIP1-ALK, a novel ALK fusion variant that responds to crizotinib.
    Fang DD; Zhang B; Gu Q; Lira M; Xu Q; Sun H; Qian M; Sheng W; Ozeck M; Wang Z; Zhang C; Chen X; Chen KX; Li J; Chen SH; Christensen J; Mao M; Chan CC
    J Thorac Oncol; 2014 Mar; 9(3):285-94. PubMed ID: 24496003
    [TBL] [Abstract][Full Text] [Related]  

  • 16. ALK inhibitors: what is the best way to treat patients with ALK+ non-small-cell lung cancer?
    Toyokawa G; Seto T
    Clin Lung Cancer; 2014 Sep; 15(5):313-9. PubMed ID: 24984564
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Activation of HER family signaling as a mechanism of acquired resistance to ALK inhibitors in EML4-ALK-positive non-small cell lung cancer.
    Tanizaki J; Okamoto I; Okabe T; Sakai K; Tanaka K; Hayashi H; Kaneda H; Takezawa K; Kuwata K; Yamaguchi H; Hatashita E; Nishio K; Nakagawa K
    Clin Cancer Res; 2012 Nov; 18(22):6219-26. PubMed ID: 22843788
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Targeting stemness is an effective strategy to control EML4-ALK+ non-small cell lung cancer cells.
    Oh SJ; Noh KH; Lee YH; Hong SO; Song KH; Lee HJ; Kim S; Kim TM; Jeon JH; Seo JH; Kim DW; Kim TW
    Oncotarget; 2015 Nov; 6(37):40255-67. PubMed ID: 26517679
    [TBL] [Abstract][Full Text] [Related]  

  • 19. ALK inhibitor PF02341066 (crizotinib) increases sensitivity to radiation in non-small cell lung cancer expressing EML4-ALK.
    Sun Y; Nowak KA; Zaorsky NG; Winchester CL; Dalal K; Giacalone NJ; Liu N; Werner-Wasik M; Wasik MA; Dicker AP; Lu B
    Mol Cancer Ther; 2013 May; 12(5):696-704. PubMed ID: 23443800
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Activity of second-generation ALK inhibitors against crizotinib-resistant mutants in an NPM-ALK model compared to EML4-ALK.
    Fontana D; Ceccon M; Gambacorti-Passerini C; Mologni L
    Cancer Med; 2015 Jul; 4(7):953-65. PubMed ID: 25727400
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.