BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 25349155)

  • 1. Structural basis of the proteolytic and chaperone activity of Chlamydia trachomatis CT441.
    Kohlmann F; Shima K; Hilgenfeld R; Solbach W; Rupp J; Hansen G
    J Bacteriol; 2015 Jan; 197(1):211-8. PubMed ID: 25349155
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Chlamydial protease CT441 interacts with SRAP1 co-activator of estrogen receptor alpha and partially alleviates its co-activation activity.
    Borth N; Massier J; Franke C; Sachse K; Saluz HP; Hänel F
    J Steroid Biochem Mol Biol; 2010 Mar; 119(1-2):89-95. PubMed ID: 20079837
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Chlamydial CT441 is a PDZ domain-containing tail-specific protease that interferes with the NF-kappaB pathway of immune response.
    Lad SP; Yang G; Scott DA; Wang G; Nair P; Mathison J; Reddy VS; Li E
    J Bacteriol; 2007 Sep; 189(18):6619-25. PubMed ID: 17631635
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Production, crystallization and X-ray diffraction analysis of the protease CT441 from Chlamydia trachomatis.
    Kohlmann F; Shima K; Rupp J; Solbach W; Hilgenfeld R; Hansen G
    Acta Crystallogr F Struct Biol Commun; 2015 Dec; 71(Pt 12):1454-8. PubMed ID: 26625285
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Chlamydia trachomatis strain with a chemically generated amino acid substitution (P370L) in the cthtrA gene shows reduced elementary body production.
    Marsh JW; Wee BA; Tyndall JD; Lott WB; Bastidas RJ; Caldwell HD; Valdivia RH; Kari L; Huston WM
    BMC Microbiol; 2015 Sep; 15():194. PubMed ID: 26424482
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Identification of novel type III secretion chaperone-substrate complexes of Chlamydia trachomatis.
    Pais SV; Milho C; Almeida F; Mota LJ
    PLoS One; 2013; 8(2):e56292. PubMed ID: 23431368
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The Periplasmic Tail-Specific Protease, Tsp, Is Essential for Secondary Differentiation in
    Swoboda AR; Wood NA; Saery EA; Fisher DJ; Ouellette SP
    J Bacteriol; 2023 May; 205(5):e0009923. PubMed ID: 37092988
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Analysis of putative Chlamydia trachomatis chaperones Scc2 and Scc3 and their use in the identification of type III secretion substrates.
    Fields KA; Fischer ER; Mead DJ; Hackstadt T
    J Bacteriol; 2005 Sep; 187(18):6466-78. PubMed ID: 16159780
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Chlamydia trachomatis Slc1 is a type III secretion chaperone that enhances the translocation of its invasion effector substrate TARP.
    Brinkworth AJ; Malcolm DS; Pedrosa AT; Roguska K; Shahbazian S; Graham JE; Hayward RD; Carabeo RA
    Mol Microbiol; 2011 Oct; 82(1):131-44. PubMed ID: 21883523
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structures of DegQ from Legionella pneumophila Define Distinct ON and OFF States.
    Schubert A; Wrase R; Hilgenfeld R; Hansen G
    J Mol Biol; 2015 Aug; 427(17):2840-51. PubMed ID: 26205420
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Effector proteins of Clamidia].
    Kariagina AS; Alekseevskiĭ AV; Spirin SA; Zigangirova NA; Gintsburg AL
    Mol Biol (Mosk); 2009; 43(6):963-83. PubMed ID: 20088373
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Chlamydia trachomatis Tarp harbors distinct G and F actin binding domains that bundle actin filaments.
    Jiwani S; Alvarado S; Ohr RJ; Romero A; Nguyen B; Jewett TJ
    J Bacteriol; 2013 Feb; 195(4):708-16. PubMed ID: 23204471
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Chlamydia trachomatis Type III Secretion Proteins Regulate Transcription.
    Hanson BR; Slepenkin A; Peterson EM; Tan M
    J Bacteriol; 2015 Oct; 197(20):3238-44. PubMed ID: 26216849
    [TBL] [Abstract][Full Text] [Related]  

  • 14. the active site residue V266 of Chlamydial HtrA is critical for substrate binding during both in vitro and in vivo conditions.
    Gloeckl S; Tyndall JD; Stansfield SH; Timms P; Huston WM
    J Mol Microbiol Biotechnol; 2012; 22(1):10-6. PubMed ID: 22353774
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The Chlamydia type III secretion system C-ring engages a chaperone-effector protein complex.
    Spaeth KE; Chen YS; Valdivia RH
    PLoS Pathog; 2009 Sep; 5(9):e1000579. PubMed ID: 19750218
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Expression and localization of predicted inclusion membrane proteins in Chlamydia trachomatis.
    Weber MM; Bauler LD; Lam J; Hackstadt T
    Infect Immun; 2015 Dec; 83(12):4710-8. PubMed ID: 26416906
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structural and biochemical characterization of Chlamydia trachomatis hypothetical protein CT263 supports that menaquinone synthesis occurs through the futalosine pathway.
    Barta ML; Thomas K; Yuan H; Lovell S; Battaile KP; Schramm VL; Hefty PS
    J Biol Chem; 2014 Nov; 289(46):32214-32229. PubMed ID: 25253688
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The Salmonella enterica serovar typhimurium-encoded type III secretion systems can translocate Chlamydia trachomatis proteins into the cytosol of host cells.
    Ho TD; Starnbach MN
    Infect Immun; 2005 Feb; 73(2):905-11. PubMed ID: 15664932
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Chain-Selective Isotopic Labeling of the Heterodimeric Type III Secretion Chaperone, Scc4:Scc1, Reveals the Total Structural Rearrangement of the
    Ukwaththage TO; Keane SM; Shen L; Macnaughtan MA
    Biomolecules; 2020 Oct; 10(11):. PubMed ID: 33114427
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Characterization of interactions between inclusion membrane proteins from Chlamydia trachomatis.
    Gauliard E; Ouellette SP; Rueden KJ; Ladant D
    Front Cell Infect Microbiol; 2015; 5():13. PubMed ID: 25717440
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.