These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
5. Proteogenomic Characterization of Patient-Derived Xenografts Highlights the Role of REST in Neuroendocrine Differentiation of Castration-Resistant Prostate Cancer. Flores-Morales A; Bergmann TB; Lavallee C; Batth TS; Lin D; Lerdrup M; Friis S; Bartels A; Kristensen G; Krzyzanowska A; Xue H; Fazli L; Hansen KH; Røder MA; Brasso K; Moreira JM; Bjartell A; Wang Y; Olsen JV; Collins CC; Iglesias-Gato D Clin Cancer Res; 2019 Jan; 25(2):595-608. PubMed ID: 30274982 [TBL] [Abstract][Full Text] [Related]
6. Identification of DEK as a potential therapeutic target for neuroendocrine prostate cancer. Lin D; Dong X; Wang K; Wyatt AW; Crea F; Xue H; Wang Y; Wu R; Bell RH; Haegert A; Brahmbhatt S; Hurtado-Coll A; Gout PW; Fazli L; Gleave ME; Collins CC; Wang Y Oncotarget; 2015 Jan; 6(3):1806-20. PubMed ID: 25544761 [TBL] [Abstract][Full Text] [Related]
7. Establishment and characterization of a novel treatment-related neuroendocrine prostate cancer cell line KUCaP13. Okasho K; Mizuno K; Fukui T; Lin YY; Kamiyama Y; Sunada T; Li X; Kimura H; Sumiyoshi T; Goto T; Kobayashi T; Lin D; Wang Y; Collins CC; Inoue T; Ogawa O; Akamatsu S Cancer Sci; 2021 Jul; 112(7):2781-2791. PubMed ID: 33960594 [TBL] [Abstract][Full Text] [Related]
8. Bhagirath D; Yang TL; Tabatabai ZL; Majid S; Dahiya R; Tanaka Y; Saini S Clin Cancer Res; 2019 Nov; 25(21):6532-6545. PubMed ID: 31371344 [TBL] [Abstract][Full Text] [Related]
9. Alternative RNA splicing of the GIT1 gene is associated with neuroendocrine prostate cancer. Lee AR; Gan Y; Xie N; Ramnarine VR; Lovnicki JM; Dong X Cancer Sci; 2019 Jan; 110(1):245-255. PubMed ID: 30417466 [TBL] [Abstract][Full Text] [Related]
10. FOXA2 is a sensitive and specific marker for small cell neuroendocrine carcinoma of the prostate. Park JW; Lee JK; Witte ON; Huang J Mod Pathol; 2017 Sep; 30(9):1262-1272. PubMed ID: 28621319 [TBL] [Abstract][Full Text] [Related]
11. Gene expression signatures of neuroendocrine prostate cancer and primary small cell prostatic carcinoma. Tsai HK; Lehrer J; Alshalalfa M; Erho N; Davicioni E; Lotan TL BMC Cancer; 2017 Nov; 17(1):759. PubMed ID: 29132337 [TBL] [Abstract][Full Text] [Related]
12. Clinical and Biological Features of Neuroendocrine Prostate Cancer. Yamada Y; Beltran H Curr Oncol Rep; 2021 Jan; 23(2):15. PubMed ID: 33433737 [TBL] [Abstract][Full Text] [Related]
13. Comparative study of neuroendocrine acquisition and biomarker expression between neuroendocrine and usual prostatic carcinoma. Xiao GQ; Ho G; Suen C; Hurth KM Prostate; 2021 Jun; 81(8):469-477. PubMed ID: 33848377 [TBL] [Abstract][Full Text] [Related]
14. FOXA1 inhibits prostate cancer neuroendocrine differentiation. Kim J; Jin H; Zhao JC; Yang YA; Li Y; Yang X; Dong X; Yu J Oncogene; 2017 Jul; 36(28):4072-4080. PubMed ID: 28319070 [TBL] [Abstract][Full Text] [Related]
15. The expression of YAP1 is increased in high-grade prostatic adenocarcinoma but is reduced in neuroendocrine prostate cancer. Cheng S; Prieto-Dominguez N; Yang S; Connelly ZM; StPierre S; Rushing B; Watkins A; Shi L; Lakey M; Baiamonte LB; Fazili T; Lurie A; Corey E; Shi R; Yeh Y; Yu X Prostate Cancer Prostatic Dis; 2020 Dec; 23(4):661-669. PubMed ID: 32313141 [TBL] [Abstract][Full Text] [Related]
16. The long noncoding RNA H19 regulates tumor plasticity in neuroendocrine prostate cancer. Singh N; Ramnarine VR; Song JH; Pandey R; Padi SKR; Nouri M; Olive V; Kobelev M; Okumura K; McCarthy D; Hanna MM; Mukherjee P; Sun B; Lee BR; Parker JB; Chakravarti D; Warfel NA; Zhou M; Bearss JJ; Gibb EA; Alshalalfa M; Karnes RJ; Small EJ; Aggarwal R; Feng F; Wang Y; Buttyan R; Zoubeidi A; Rubin M; Gleave M; Slack FJ; Davicioni E; Beltran H; Collins C; Kraft AS Nat Commun; 2021 Dec; 12(1):7349. PubMed ID: 34934057 [TBL] [Abstract][Full Text] [Related]
17. Molecular mechanisms underlying the development of neuroendocrine prostate cancer. Liu S; Alabi BR; Yin Q; Stoyanova T Semin Cancer Biol; 2022 Nov; 86(Pt 3):57-68. PubMed ID: 35597438 [TBL] [Abstract][Full Text] [Related]
18. Reciprocal YAP1 loss and INSM1 expression in neuroendocrine prostate cancer. Asrani K; Torres AF; Woo J; Vidotto T; Tsai HK; Luo J; Corey E; Hanratty B; Coleman I; Yegnasubramanian S; De Marzo AM; Nelson PS; Haffner MC; Lotan TL J Pathol; 2021 Dec; 255(4):425-437. PubMed ID: 34431104 [TBL] [Abstract][Full Text] [Related]
19. A novel mechanism of SRRM4 in promoting neuroendocrine prostate cancer development via a pluripotency gene network. Lee AR; Gan Y; Tang Y; Dong X EBioMedicine; 2018 Sep; 35():167-177. PubMed ID: 30100395 [TBL] [Abstract][Full Text] [Related]
20. Roles of Alternative RNA Splicing of the Bif-1 Gene by SRRM4 During the Development of Treatment-induced Neuroendocrine Prostate Cancer. Gan Y; Li Y; Long Z; Lee AR; Xie N; Lovnicki JM; Tang Y; Chen X; Huang J; Dong X EBioMedicine; 2018 May; 31():267-275. PubMed ID: 29759485 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]