BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

594 related articles for article (PubMed ID: 25349246)

  • 1. Autophagy in diabetic nephropathy.
    Ding Y; Choi ME
    J Endocrinol; 2015 Jan; 224(1):R15-30. PubMed ID: 25349246
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Autophagy and its therapeutic potential in diabetic nephropathy.
    Han YP; Liu LJ; Yan JL; Chen MY; Meng XF; Zhou XR; Qian LB
    Front Endocrinol (Lausanne); 2023; 14():1139444. PubMed ID: 37020591
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Autophagy: emerging therapeutic target for diabetic nephropathy.
    Kume S; Yamahara K; Yasuda M; Maegawa H; Koya D
    Semin Nephrol; 2014 Jan; 34(1):9-16. PubMed ID: 24485025
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Role of Impaired Nutrient and Oxygen Deprivation Signaling and Deficient Autophagic Flux in Diabetic CKD Development: Implications for Understanding the Effects of Sodium-Glucose Cotransporter 2-Inhibitors.
    Packer M
    J Am Soc Nephrol; 2020 May; 31(5):907-919. PubMed ID: 32276962
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The role of autophagy in the pathogenesis of diabetic nephropathy.
    Yamahara K; Yasuda M; Kume S; Koya D; Maegawa H; Uzu T
    J Diabetes Res; 2013; 2013():193757. PubMed ID: 24455746
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Autophagy in diabetic kidney disease: regulation, pathological role and therapeutic potential.
    Yang D; Livingston MJ; Liu Z; Dong G; Zhang M; Chen JK; Dong Z
    Cell Mol Life Sci; 2018 Feb; 75(4):669-688. PubMed ID: 28871310
    [TBL] [Abstract][Full Text] [Related]  

  • 7. P2Y2R contributes to the development of diabetic nephropathy by inhibiting autophagy response.
    Dusabimana T; Kim SR; Park EJ; Je J; Jeong K; Yun SP; Kim HJ; Kim H; Park SW
    Mol Metab; 2020 Dec; 42():101089. PubMed ID: 32987187
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Salvianolic Acid A Protects Against Diabetic Nephropathy through Ameliorating Glomerular Endothelial Dysfunction via Inhibiting AGE-RAGE Signaling.
    Hou B; Qiang G; Zhao Y; Yang X; Chen X; Yan Y; Wang X; Liu C; Zhang L; Du G
    Cell Physiol Biochem; 2017; 44(6):2378-2394. PubMed ID: 29262395
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Autophagy as a therapeutic target in diabetic nephropathy.
    Tanaka Y; Kume S; Kitada M; Kanasaki K; Uzu T; Maegawa H; Koya D
    Exp Diabetes Res; 2012; 2012():628978. PubMed ID: 22028701
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The Role of Endoplasmic Reticulum Stress in Diabetic Nephropathy.
    Fan Y; Lee K; Wang N; He JC
    Curr Diab Rep; 2017 Mar; 17(3):17. PubMed ID: 28271468
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The activity and role of autophagy in the pathogenesis of diabetic nephropathy.
    Liu WJ; Huang WF; Ye L; Chen RH; Yang C; Wu HL; Pan QJ; Liu HF
    Eur Rev Med Pharmacol Sci; 2018 May; 22(10):3182-3189. PubMed ID: 29863264
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Interference in the nutrient-sensing and inflammatory signaling pathways by renal autophagy activation in mice with late stage diabetic nephropathy.
    Li D; Yuan S; Deng Y
    Int Urol Nephrol; 2024 Jan; 56(1):303-311. PubMed ID: 37355515
    [TBL] [Abstract][Full Text] [Related]  

  • 13. LncRNA SOX2OT alleviates mesangial cell proliferation and fibrosis in diabetic nephropathy via Akt/mTOR-mediated autophagy.
    Chen K; Yu B; Liao J
    Mol Med; 2021 Jul; 27(1):71. PubMed ID: 34238205
    [TBL] [Abstract][Full Text] [Related]  

  • 14. New developments concerning the proximal tubule in diabetic nephropathy: in vitro models and mechanisms.
    Slyne J; Slattery C; McMorrow T; Ryan MP
    Nephrol Dial Transplant; 2015 Aug; 30 Suppl 4():iv60-7. PubMed ID: 26209740
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Regulation of autophagy by TGF-β: emerging role in kidney fibrosis.
    Ding Y; Choi ME
    Semin Nephrol; 2014 Jan; 34(1):62-71. PubMed ID: 24485031
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mangiferin prevents diabetic nephropathy progression and protects podocyte function via autophagy in diabetic rat glomeruli.
    Wang X; Gao L; Lin H; Song J; Wang J; Yin Y; Zhao J; Xu X; Li Z; Li L
    Eur J Pharmacol; 2018 Apr; 824():170-178. PubMed ID: 29444469
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mitochondrial dysfunction and mitophagy: the beginning and end to diabetic nephropathy?
    Higgins GC; Coughlan MT
    Br J Pharmacol; 2014 Apr; 171(8):1917-42. PubMed ID: 24720258
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The regulatory role of miRNA and lncRNA on autophagy in diabetic nephropathy.
    Yu S; Li Y; Lu X; Han Z; Li C; Yuan X; Guo D
    Cell Signal; 2024 Jun; 118():111144. PubMed ID: 38493883
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Translational Aspects of the Mammalian Target of Rapamycin Complexes in Diabetic Nephropathy.
    Abou Daher A; Alkhansa S; Azar WS; Rafeh R; Ghadieh HE; Eid AA
    Antioxid Redox Signal; 2022 Oct; 37(10-12):802-819. PubMed ID: 34544257
    [No Abstract]   [Full Text] [Related]  

  • 20. Proximal Tubule Autophagy Differs in Type 1 and 2 Diabetes.
    Sakai S; Yamamoto T; Takabatake Y; Takahashi A; Namba-Hamano T; Minami S; Fujimura R; Yonishi H; Matsuda J; Hesaka A; Matsui I; Matsusaka T; Niimura F; Yanagita M; Isaka Y
    J Am Soc Nephrol; 2019 Jun; 30(6):929-945. PubMed ID: 31040190
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 30.