These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
307 related articles for article (PubMed ID: 25349306)
1. Cancer in silico drug discovery: a systems biology tool for identifying candidate drugs to target specific molecular tumor subtypes. San Lucas FA; Fowler J; Chang K; Kopetz S; Vilar E; Scheet P Mol Cancer Ther; 2014 Dec; 13(12):3230-40. PubMed ID: 25349306 [TBL] [Abstract][Full Text] [Related]
2. Drug discovery using clinical outcome-based Connectivity Mapping: application to ovarian cancer. Raghavan R; Hyter S; Pathak HB; Godwin AK; Konecny G; Wang C; Goode EL; Fridley BL BMC Genomics; 2016 Oct; 17(1):811. PubMed ID: 27756228 [TBL] [Abstract][Full Text] [Related]
3. Identification of potential drugs for diffuse large b-cell lymphoma based on bioinformatics and Connectivity Map database. Luo B; Gu YY; Wang XD; Chen G; Peng ZG Pathol Res Pract; 2018 Nov; 214(11):1854-1867. PubMed ID: 30244948 [TBL] [Abstract][Full Text] [Related]
4. DeSigN: connecting gene expression with therapeutics for drug repurposing and development. Lee BK; Tiong KH; Chang JK; Liew CS; Abdul Rahman ZA; Tan AC; Khang TF; Cheong SC BMC Genomics; 2017 Jan; 18(Suppl 1):934. PubMed ID: 28198666 [TBL] [Abstract][Full Text] [Related]
5. Connectivity mapping using a combined gene signature from multiple colorectal cancer datasets identified candidate drugs including existing chemotherapies. Wen Q; O'Reilly P; Dunne PD; Lawler M; Van Schaeybroeck S; Salto-Tellez M; Hamilton P; Zhang SD BMC Syst Biol; 2015; 9 Suppl 5(Suppl 5):S4. PubMed ID: 26356760 [TBL] [Abstract][Full Text] [Related]
6. Computational analysis of receptor tyrosine kinase inhibitors and cancer metabolism: implications for treatment and discovery of potential therapeutic signatures. Li J; Halfter K; Zhang M; Saad C; Xu K; Bauer B; Huang Y; Shi L; Mansmann UR BMC Cancer; 2019 Jun; 19(1):600. PubMed ID: 31208363 [TBL] [Abstract][Full Text] [Related]
7. Data Mining Approaches for Genomic Biomarker Development: Applications Using Drug Screening Data from the Cancer Genome Project and the Cancer Cell Line Encyclopedia. Covell DG PLoS One; 2015; 10(7):e0127433. PubMed ID: 26132924 [TBL] [Abstract][Full Text] [Related]
8. Drug Repositioning for Cancer Therapy Based on Large-Scale Drug-Induced Transcriptional Signatures. Lee H; Kang S; Kim W PLoS One; 2016; 11(3):e0150460. PubMed ID: 26954019 [TBL] [Abstract][Full Text] [Related]
9. Identification of druggable cancer driver genes amplified across TCGA datasets. Chen Y; McGee J; Chen X; Doman TN; Gong X; Zhang Y; Hamm N; Ma X; Higgs RE; Bhagwat SV; Buchanan S; Peng SB; Staschke KA; Yadav V; Yue Y; Kouros-Mehr H PLoS One; 2014; 9(5):e98293. PubMed ID: 24874471 [TBL] [Abstract][Full Text] [Related]
10. Gene expression patterns in mismatch repair-deficient colorectal cancers highlight the potential therapeutic role of inhibitors of the phosphatidylinositol 3-kinase-AKT-mammalian target of rapamycin pathway. Vilar E; Mukherjee B; Kuick R; Raskin L; Misek DE; Taylor JM; Giordano TJ; Hanash SM; Fearon ER; Rennert G; Gruber SB Clin Cancer Res; 2009 Apr; 15(8):2829-39. PubMed ID: 19351759 [TBL] [Abstract][Full Text] [Related]
11. BRAF V600E Mutant Colorectal Cancer Subtypes Based on Gene Expression. Barras D; Missiaglia E; Wirapati P; Sieber OM; Jorissen RN; Love C; Molloy PL; Jones IT; McLaughlin S; Gibbs P; Guinney J; Simon IM; Roth AD; Bosman FT; Tejpar S; Delorenzi M Clin Cancer Res; 2017 Jan; 23(1):104-115. PubMed ID: 27354468 [TBL] [Abstract][Full Text] [Related]
12. UALCAN: A Portal for Facilitating Tumor Subgroup Gene Expression and Survival Analyses. Chandrashekar DS; Bashel B; Balasubramanya SAH; Creighton CJ; Ponce-Rodriguez I; Chakravarthi BVSK; Varambally S Neoplasia; 2017 Aug; 19(8):649-658. PubMed ID: 28732212 [TBL] [Abstract][Full Text] [Related]
13. The underlying molecular mechanism and potential drugs for treatment in papillary renal cell carcinoma: A study based on TCGA and Cmap datasets. Pang JS; Li ZK; Lin P; Wang XD; Chen G; Yan HB; Li SH Oncol Rep; 2019 Apr; 41(4):2089-2102. PubMed ID: 30816528 [TBL] [Abstract][Full Text] [Related]
14. Identification of potential synthetic lethal genes to p53 using a computational biology approach. Wang X; Simon R BMC Med Genomics; 2013 Sep; 6():30. PubMed ID: 24025726 [TBL] [Abstract][Full Text] [Related]
15. Integrative modeling of multi-omics data to identify cancer drivers and infer patient-specific gene activity. Pavel AB; Sonkin D; Reddy A BMC Syst Biol; 2016 Feb; 10():16. PubMed ID: 26864072 [TBL] [Abstract][Full Text] [Related]
16. Sensitivities and Dependencies of Voutsadakis IA Medicina (Kaunas); 2022 Oct; 58(10):. PubMed ID: 36295658 [No Abstract] [Full Text] [Related]
17. Molecular Pathway Analysis of Mutation Data for Biomarkers Discovery and Scoring of Target Cancer Drugs. Zolotovskaia M; Sorokin M; Garazha A; Borisov N; Buzdin A Methods Mol Biol; 2020; 2063():207-234. PubMed ID: 31667773 [TBL] [Abstract][Full Text] [Related]
18. A pan-cancer analysis of progression mechanisms and drug sensitivity in cancer cell lines. Fleck JL; Pavel AB; Cassandras CG Mol Omics; 2019 Dec; 15(6):399-405. PubMed ID: 31570905 [TBL] [Abstract][Full Text] [Related]
19. PanDrugs: a novel method to prioritize anticancer drug treatments according to individual genomic data. Piñeiro-Yáñez E; Reboiro-Jato M; Gómez-López G; Perales-Patón J; Troulé K; Rodríguez JM; Tejero H; Shimamura T; López-Casas PP; Carretero J; Valencia A; Hidalgo M; Glez-Peña D; Al-Shahrour F Genome Med; 2018 May; 10(1):41. PubMed ID: 29848362 [TBL] [Abstract][Full Text] [Related]
20. Prioritization of candidate cancer drugs based on a drug functional similarity network constructed by integrating pathway activities and drug activities. Di J; Zheng B; Kong Q; Jiang Y; Liu S; Yang Y; Han X; Sheng Y; Zhang Y; Cheng L; Han J Mol Oncol; 2019 Oct; 13(10):2259-2277. PubMed ID: 31408580 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]