These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

251 related articles for article (PubMed ID: 25349984)

  • 41. Microscopy Hacks: development of various techniques to assist quantitative nanoanalysis and advanced electron microscopy.
    Watanabe M
    Microscopy (Oxf); 2013 Apr; 62(2):217-41. PubMed ID: 23515525
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Spectroscopic electron tomography.
    Möbus G; Doole RC; Inkson BJ
    Ultramicroscopy; 2003 Sep; 96(3-4):433-51. PubMed ID: 12871806
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Elemental imaging by EELS and EDXS in the analytical electron microscope : Its relevance to trace element research.
    Leapman RD; Fiori CE; Gorlen KE
    Biol Trace Elem Res; 1987 Aug; 13(1):89-102. PubMed ID: 24254668
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Development of Electron Energy Loss Spectroscopy in the Biological Sciences.
    Aronova MA; Leapman RD
    MRS Bull; 2012 Jan; 37(1):53-62. PubMed ID: 23049161
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Three-dimensional analysis of carbon nanotube networks in interconnects by electron tomography without missing wedge artifacts.
    Ke X; Bals S; Cott D; Hantschel T; Bender H; Van Tendeloo G
    Microsc Microanal; 2010 Apr; 16(2):210-7. PubMed ID: 20187989
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Biological applications of energy-filtered TEM.
    Saunders M; Shaw JA
    Methods Mol Biol; 2014; 1117():689-706. PubMed ID: 24357386
    [TBL] [Abstract][Full Text] [Related]  

  • 47. A consistent path for phase determination based on transmission electron microscopy techniques and supporting simulations.
    Konrad L; Zhao H; Gspan C; Rehr J; Kolb U; Lattemann M; Kothleitner G
    Micron; 2018 Dec; 115():41-49. PubMed ID: 30173001
    [TBL] [Abstract][Full Text] [Related]  

  • 48. From electron energy-loss spectroscopy to multi-dimensional and multi-signal electron microscopy.
    Colliex C
    J Electron Microsc (Tokyo); 2011; 60 Suppl 1():S161-71. PubMed ID: 21844587
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Electron energy loss spectroscopy of polytetrafluoroethylene: experiment and first principles calculations.
    Wang C; Duscher G; Paddison SJ
    Microscopy (Oxf); 2014 Feb; 63(1):73-83. PubMed ID: 24296695
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Energy-dispersive X-ray spectroscopy in a low energy electron microscope.
    Tromp RM
    Ultramicroscopy; 2024 May; 259():113935. PubMed ID: 38330595
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Automated background subtraction technique for electron energy-loss spectroscopy and application to semiconductor heterostructures.
    Angadi VC; Abhayaratne C; Walther T
    J Microsc; 2016 May; 262(2):157-66. PubMed ID: 26998582
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Reprint of "Three-dimensional elemental mapping of phosphorus by quantitative electron spectroscopic tomography (QuEST)" [J. Struct. Biol. 160 (2007) 35-48].
    Aronova MA; Kim YC; Harmon R; Sousa AA; Zhang G; Leapman RD
    J Struct Biol; 2008 Mar; 161(3):322-35. PubMed ID: 18342742
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Two-dimensional quantitative mapping of arsenic in nanometer-scale silicon devices using STEM EELS-EDX spectroscopy.
    Servanton G; Pantel R; Juhel M; Bertin F
    Micron; 2009; 40(5-6):543-51. PubMed ID: 19414268
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Elemental analysis and fine structure of mitochondrial granules in growth plate chondrocytes studied by electron energy loss spectroscopy and energy dispersive X-ray microanalysis.
    Wroblewski J; Wróblewski R; Mory C; Colliex C
    Scanning Microsc; 1991 Sep; 5(3):885-92; discussion 893-4. PubMed ID: 1808719
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Configuration of microbially synthesized Pd-Au nanoparticles studied by STEM-based techniques.
    Tran DT; Jones IP; Preece JA; Johnston RL; Deplanche K; Macaskie LE
    Nanotechnology; 2012 Feb; 23(5):055701. PubMed ID: 22236722
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Energy dispersive X-ray analysis of titanium dioxide nanoparticle distribution after intravenous and subcutaneous injection in mice.
    Patri A; Umbreit T; Zheng J; Nagashima K; Goering P; Francke-Carroll S; Gordon E; Weaver J; Miller T; Sadrieh N; McNeil S; Stratmeyer M
    J Appl Toxicol; 2009 Nov; 29(8):662-72. PubMed ID: 19626582
    [TBL] [Abstract][Full Text] [Related]  

  • 57. New developments in electron energy loss spectroscopy.
    Keast VJ; Bosman M
    Microsc Res Tech; 2007 Mar; 70(3):211-9. PubMed ID: 17279511
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Comparison of intensity distributions in tomograms from BF TEM, ADF STEM, HAADF STEM, and calculated tilt series.
    Friedrich H; McCartney MR; Buseck PR
    Ultramicroscopy; 2005 Dec; 106(1):18-27. PubMed ID: 16081215
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Analysis of 3D elemental distribution in nanomaterials: Towards higher throughput and dose efficiency.
    Skorikov A; Batenburg KJ; Bals S
    J Microsc; 2023 Mar; 289(3):157-163. PubMed ID: 36567626
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Three-dimensional imaging of copper pillars using x-ray tomography within a scanning electron microscope: a simulation study based on synchrotron data.
    Martin N; Bertheau J; Bleuet P; Charbonnier J; Hugonnard P; Laloum D; Lorut F; Tabary J
    Rev Sci Instrum; 2013 Feb; 84(2):023708. PubMed ID: 23464219
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.