These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

230 related articles for article (PubMed ID: 25349984)

  • 61. Towards better 3-D reconstructions by combining electron tomography and atom-probe tomography.
    Arslan I; Marquis EA; Homer M; Hekmaty MA; Bartelt NC
    Ultramicroscopy; 2008 Nov; 108(12):1579-85. PubMed ID: 18620812
    [TBL] [Abstract][Full Text] [Related]  

  • 62. In Situ Industrial Bimetallic Catalyst Characterization using Scanning Transmission Electron Microscopy and X-ray Absorption Spectroscopy at One Atmosphere and Elevated Temperature.
    Prestat E; Kulzick MA; Dietrich PJ; Smith MM; Tien ME; Burke MG; Haigh SJ; Zaluzec NJ
    Chemphyschem; 2017 Aug; 18(16):2151-2156. PubMed ID: 28605152
    [TBL] [Abstract][Full Text] [Related]  

  • 63. The development and characteristics of a high-speed EELS mapping system for a dedicated STEM.
    Isakozawa S; Kaji K; Jarausch K; Terada S; Baba N
    J Electron Microsc (Tokyo); 2008 Apr; 57(2):41-5. PubMed ID: 18322296
    [TBL] [Abstract][Full Text] [Related]  

  • 64. High-resolution analytical TEM of nanostructured materials.
    Schneider R
    Anal Bioanal Chem; 2002 Oct; 374(4):639-45. PubMed ID: 12397484
    [TBL] [Abstract][Full Text] [Related]  

  • 65. 3D elemental mapping with nanometer scale depth resolution via electron optical sectioning.
    Pennycook TJ; Yang H; Jones L; Cabero M; Rivera-Calzada A; Leon C; Varela M; Santamaria J; Nellist PD
    Ultramicroscopy; 2017 Mar; 174():27-34. PubMed ID: 28012372
    [TBL] [Abstract][Full Text] [Related]  

  • 66. 3D elemental and structural analysis of biological specimens using electrons and ions.
    Scott K
    J Microsc; 2011 Apr; 242(1):86-93. PubMed ID: 21118236
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Nanometer Resolution Elemental Mapping in Graphene-Based TEM Liquid Cells.
    Kelly DJ; Zhou M; Clark N; Hamer MJ; Lewis EA; Rakowski AM; Haigh SJ; Gorbachev RV
    Nano Lett; 2018 Feb; 18(2):1168-1174. PubMed ID: 29323499
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Microcalorimeter-type energy dispersive X-ray spectrometer for a transmission electron microscope.
    Hara T; Tanaka K; Maehata K; Mitsuda K; Yamasaki NY; Ohsaki M; Watanabe K; Yu X; Ito T; Yamanaka Y
    J Electron Microsc (Tokyo); 2010; 59(1):17-26. PubMed ID: 19717388
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Segmentation of elemental EDS maps by means of multiple clustering combined with phase identification.
    Münch B; Martin LH; Leemann A
    J Microsc; 2015 Dec; 260(3):411-26. PubMed ID: 26367007
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Systematic approaches for targeting an atom-probe tomography sample fabricated in a thin TEM specimen: Correlative structural, chemical and 3-D reconstruction analyses.
    Baik SI; Isheim D; Seidman DN
    Ultramicroscopy; 2018 Jan; 184(Pt A):284-292. PubMed ID: 29054043
    [TBL] [Abstract][Full Text] [Related]  

  • 71. 4D electron tomography.
    Kwon OH; Zewail AH
    Science; 2010 Jun; 328(5986):1668-73. PubMed ID: 20576886
    [TBL] [Abstract][Full Text] [Related]  

  • 72. 3D chemical mapping: application of scanning transmission (soft) X-ray microscopy (STXM) in combination with angle-scan tomography in bio-, geo-, and environmental sciences.
    Obst M; Schmid G
    Methods Mol Biol; 2014; 1117():757-81. PubMed ID: 24357389
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Revealing Spatial Distribution of Al-Coordinated Species in a Phase-Separated Aluminosilicate Glass by STEM-EELS.
    Liao K; Masuno A; Taguchi A; Moriwake H; Inoue H; Mizoguchi T
    J Phys Chem Lett; 2020 Nov; 11(22):9637-9642. PubMed ID: 33191755
    [TBL] [Abstract][Full Text] [Related]  

  • 74. In situ electron energy-loss spectroscopy in liquids.
    Holtz ME; Yu Y; Gao J; Abruña HD; Muller DA
    Microsc Microanal; 2013 Aug; 19(4):1027-35. PubMed ID: 23721691
    [TBL] [Abstract][Full Text] [Related]  

  • 75. X-ray energy-dispersive spectrometry during in situ liquid cell studies using an analytical electron microscope.
    Zaluzec NJ; Burke MG; Haigh SJ; Kulzick MA
    Microsc Microanal; 2014 Apr; 20(2):323-9. PubMed ID: 24564969
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Spectral mixture analysis of EELS spectrum-images.
    Dobigeon N; Brun N
    Ultramicroscopy; 2012 Sep; 120():25-34. PubMed ID: 22796556
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Reduced electron exposure for energy-dispersive spectroscopy using dynamic sampling.
    Zhang Y; Godaliyadda GMD; Ferrier N; Gulsoy EB; Bouman CA; Phatak C
    Ultramicroscopy; 2018 Jan; 184(Pt B):90-97. PubMed ID: 29102828
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Thin film analysis in the nanometer scale.
    Wetzig K; Bauer HD
    Anal Bioanal Chem; 1996 Jun; 355(5-6):447-51. PubMed ID: 15045300
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Elemental composition of strawberry plants inoculated with the plant growth-promoting bacterium Azospirillum brasilense REC3, assessed with scanning electron microscopy and energy dispersive X-ray analysis.
    Guerrero-Molina MF; Lovaisa NC; Salazar SM; Díaz-Ricci JC; Pedraza RO
    Plant Biol (Stuttg); 2014 Jul; 16(4):726-31. PubMed ID: 24148195
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Three-Dimensional Nanoscale Mapping of State-of-the-Art Field-Effect Transistors (FinFETs).
    Parikh P; Senowitz C; Lyons D; Martin I; Prosa TJ; DiBattista M; Devaraj A; Meng YS
    Microsc Microanal; 2017 Oct; 23(5):916-925. PubMed ID: 28854989
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.