These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

206 related articles for article (PubMed ID: 25350070)

  • 1. 3D orbital tracking in a modified two-photon microscope: an application to the tracking of intracellular vesicles.
    Anzalone A; Annibale P; Gratton E
    J Vis Exp; 2014 Oct; (92):e51794. PubMed ID: 25350070
    [TBL] [Abstract][Full Text] [Related]  

  • 2. In Vivo Cell Tracking Using Two-Photon Microscopy.
    Malide D
    Methods Mol Biol; 2016; 1444():109-22. PubMed ID: 27283422
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Orbital Single Particle Tracking on a commercial confocal microscope using piezoelectric stage feedback.
    Lanzanò L; Gratton E
    Methods Appl Fluoresc; 2014 Jun; 2(2):. PubMed ID: 25419461
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Distance measurement by circular scanning of the excitation beam in the two-photon microscope.
    Kis-Petikova K; Gratton E
    Microsc Res Tech; 2004 Jan; 63(1):34-49. PubMed ID: 14677132
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Wide-field three-dimensional optical imaging using temporal focusing for holographically trapped microparticles.
    Spesyvtsev R; Rendall HA; Dholakia K
    Opt Lett; 2015 Nov; 40(21):4847-50. PubMed ID: 26512465
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Random-Access Multiphoton Microscopy for Fast Three-Dimensional Imaging.
    Reddy GD; Cotton RJ; Tolias AS; Saggau P
    Adv Exp Med Biol; 2015; 859():455-72. PubMed ID: 26238064
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Electrically tunable lens speeds up 3D orbital tracking.
    Annibale P; Dvornikov A; Gratton E
    Biomed Opt Express; 2015 Jun; 6(6):2181-90. PubMed ID: 26114037
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Tracking and Quantifying Developmental Processes in C. elegans Using Open-source Tools.
    Dutta P; Lehmann C; Odedra D; Singh D; Pohl C
    J Vis Exp; 2015 Dec; (106):e53469. PubMed ID: 26709526
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Chromatin dynamics in interphase cells revealed by tracking in a two-photon excitation microscope.
    Levi V; Ruan Q; Plutz M; Belmont AS; Gratton E
    Biophys J; 2005 Dec; 89(6):4275-85. PubMed ID: 16150965
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A specific probe for two-photon fluorescence lysosomal imaging.
    Wu Z; Tang M; Tian T; Wu J; Deng Y; Dong X; Tan Z; Weng X; Liu Z; Wang C; Zhou X
    Talanta; 2011 Dec; 87():216-21. PubMed ID: 22099670
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Real-time nanomicroscopy via three-dimensional single-particle tracking.
    Katayama Y; Burkacky O; Meyer M; Bräuchle C; Gratton E; Lamb DC
    Chemphyschem; 2009 Oct; 10(14):2458-64. PubMed ID: 19760694
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A compact multiphoton 3D imaging system for recording fast neuronal activity.
    Vucinić D; Sejnowski TJ
    PLoS One; 2007 Aug; 2(8):e699. PubMed ID: 17684546
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Monitoring synaptic and neuronal activity in 3D with synthetic and genetic indicators using a compact acousto-optic lens two-photon microscope.
    Fernández-Alfonso T; Nadella KM; Iacaruso MF; Pichler B; Roš H; Kirkby PA; Silver RA
    J Neurosci Methods; 2014 Jan; 222():69-81. PubMed ID: 24200507
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Adding new dimensions to laser-scanning fluorescence microscopy.
    De AK; Goswami D
    J Microsc; 2009 Feb; 233(2):320-5. PubMed ID: 19220698
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Multiphoton intravital microscopy in small animals: motion artefact challenges and technical solutions.
    Soulet D; Lamontagne-Proulx J; Aubé B; Davalos D
    J Microsc; 2020 Apr; 278(1):3-17. PubMed ID: 32072642
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Three-dimensional imaging of sulfides in silicate rocks at submicron resolution with multiphoton microscopy.
    Bénard A; Palle S; Doucet LS; Ionov DA
    Microsc Microanal; 2011 Dec; 17(6):937-43. PubMed ID: 22093970
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Three-dimensional tracking of cardiac catheters using an inverse geometry x-ray fluoroscopy system.
    Speidel MA; Tomkowiak MT; Raval AN; Van Lysel MS
    Med Phys; 2010 Dec; 37(12):6377-89. PubMed ID: 21302795
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The effect of object speed and direction on the performance of 3D speckle tracking using a 3D swept-volume ultrasound probe.
    Harris EJ; Miller NR; Bamber JC; Symonds-Tayler JR; Evans PM
    Phys Med Biol; 2011 Nov; 56(22):7127-43. PubMed ID: 22025168
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Time-resolved three-dimensional molecular tracking in live cells.
    Wells NP; Lessard GA; Goodwin PM; Phipps ME; Cutler PJ; Lidke DS; Wilson BS; Werner JH
    Nano Lett; 2010 Nov; 10(11):4732-7. PubMed ID: 20957984
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nanoscale three-dimensional single particle tracking.
    Dupont A; Lamb DC
    Nanoscale; 2011 Nov; 3(11):4532-41. PubMed ID: 21960183
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.