BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

176 related articles for article (PubMed ID: 25350116)

  • 1. Use of stopped-flow fluorescence and labeled nucleotides to analyze the ATP turnover cycle of kinesins.
    Patel JT; Belsham HR; Rathbone AJ; Friel CT
    J Vis Exp; 2014 Oct; (92):e52142. PubMed ID: 25350116
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Analysing the ATP turnover cycle of microtubule motors.
    Friel CT; Bagshaw CR; Howard J
    Methods Mol Biol; 2011; 777():177-92. PubMed ID: 21773929
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The kinesin-13 MCAK has an unconventional ATPase cycle adapted for microtubule depolymerization.
    Friel CT; Howard J
    EMBO J; 2011 Aug; 30(19):3928-39. PubMed ID: 21873978
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Coupling of kinesin ATP turnover to translocation and microtubule regulation: one engine, many machines.
    Friel CT; Howard J
    J Muscle Res Cell Motil; 2012 Dec; 33(6):377-83. PubMed ID: 22447431
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Pre-steady-state kinetics of the microtubule-kinesin ATPase.
    Gilbert SP; Johnson KA
    Biochemistry; 1994 Feb; 33(7):1951-60. PubMed ID: 8110800
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Measuring kinesin's first step.
    Rosenfeld SS; Xing J; Jefferson GM; Cheung HC; King PH
    J Biol Chem; 2002 Sep; 277(39):36731-9. PubMed ID: 12122000
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Kinetics of nucleotide-dependent structural transitions in the kinesin-1 hydrolysis cycle.
    Mickolajczyk KJ; Deffenbaugh NC; Arroyo JO; Andrecka J; Kukura P; Hancock WO
    Proc Natl Acad Sci U S A; 2015 Dec; 112(52):E7186-93. PubMed ID: 26676576
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Highly processive microtubule-stimulated ATP hydrolysis by dimeric kinesin head domains.
    Hackney DD
    Nature; 1995 Oct; 377(6548):448-50. PubMed ID: 7566125
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Kinesin's backsteps under mechanical load.
    Hyeon C; Klumpp S; Onuchic JN
    Phys Chem Chem Phys; 2009 Jun; 11(24):4899-910. PubMed ID: 19506765
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nucleotide-dependent movements of the kinesin motor domain predicted by simulated annealing.
    Wriggers W; Schulten K
    Biophys J; 1998 Aug; 75(2):646-61. PubMed ID: 9675167
    [TBL] [Abstract][Full Text] [Related]  

  • 11. High-resolution structures of kinesin on microtubules provide a basis for nucleotide-gated force-generation.
    Shang Z; Zhou K; Xu C; Csencsits R; Cochran JC; Sindelar CV
    Elife; 2014 Nov; 3():e04686. PubMed ID: 25415053
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Kinesin's moonwalk.
    Carter NJ; Cross RA
    Curr Opin Cell Biol; 2006 Feb; 18(1):61-7. PubMed ID: 16361092
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Kinetics and motility of the Eg5 microtubule motor.
    Lockhart A; Cross RA
    Biochemistry; 1996 Feb; 35(7):2365-73. PubMed ID: 8652578
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Conformational change of the loop L5 in rice kinesin motor domain induced by nucleotide binding.
    Umeki N; Mitsui T; Kondo K; Maruta S
    J Biochem; 2006 May; 139(5):857-64. PubMed ID: 16751593
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A kinetic dissection of the fast and superprocessive kinesin-3 KIF1A reveals a predominant one-head-bound state during its chemomechanical cycle.
    Zaniewski TM; Gicking AM; Fricks J; Hancock WO
    J Biol Chem; 2020 Dec; 295(52):17889-17903. PubMed ID: 33082143
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Moving a microtubule may require two heads: a kinetic investigation of monomeric Ncd.
    Mackey AT; Gilbert SP
    Biochemistry; 2000 Feb; 39(6):1346-55. PubMed ID: 10684615
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Monastrol inhibition of the mitotic kinesin Eg5.
    Cochran JC; Gatial JE; Kapoor TM; Gilbert SP
    J Biol Chem; 2005 Apr; 280(13):12658-67. PubMed ID: 15665380
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Conserved mechanisms of microtubule-stimulated ADP release, ATP binding, and force generation in transport kinesins.
    Atherton J; Farabella I; Yu IM; Rosenfeld SS; Houdusse A; Topf M; Moores CA
    Elife; 2014 Sep; 3():e03680. PubMed ID: 25209998
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Drosophila Ncd reveals an evolutionarily conserved powerstroke mechanism for homodimeric and heterodimeric kinesin-14s.
    Zhang P; Dai W; Hahn J; Gilbert SP
    Proc Natl Acad Sci U S A; 2015 May; 112(20):6359-64. PubMed ID: 25941402
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Kinesin's processivity results from mechanical and chemical coordination between the ATP hydrolysis cycles of the two motor domains.
    Hancock WO; Howard J
    Proc Natl Acad Sci U S A; 1999 Nov; 96(23):13147-52. PubMed ID: 10557288
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.