These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 25350120)

  • 1. Learning accurate and interpretable models based on regularized random forests regression.
    Liu S; Dissanayake S; Patel S; Dang X; Mlsna T; Chen Y; Wilkins D
    BMC Syst Biol; 2014; 8 Suppl 3(Suppl 3):S5. PubMed ID: 25350120
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Combined rule extraction and feature elimination in supervised classification.
    Liu S; Patel RY; Daga PR; Liu H; Fu G; Doerksen RJ; Chen Y; Wilkins DE
    IEEE Trans Nanobioscience; 2012 Sep; 11(3):228-36. PubMed ID: 22987128
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Bioprocess data mining using regularized regression and random forests.
    Hassan S; Farhan M; Mangayil R; Huttunen H; Aho T
    BMC Syst Biol; 2013; 7 Suppl 1(Suppl 1):S5. PubMed ID: 24268049
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Toward better understanding of protein secondary structure: extracting prediction rules.
    Nguyen MN; Zurada JM; Rajapakse JC
    IEEE/ACM Trans Comput Biol Bioinform; 2011; 8(3):858-64. PubMed ID: 21393657
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Pathway analysis using random forests with bivariate node-split for survival outcomes.
    Pang H; Datta D; Zhao H
    Bioinformatics; 2010 Jan; 26(2):250-8. PubMed ID: 19933158
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Genome-wide association data classification and SNPs selection using two-stage quality-based Random Forests.
    Nguyen TT; Huang J; Wu Q; Nguyen T; Li M
    BMC Genomics; 2015; 16 Suppl 2(Suppl 2):S5. PubMed ID: 25708662
    [TBL] [Abstract][Full Text] [Related]  

  • 7. eNetXplorer: an R package for the quantitative exploration of elastic net families for generalized linear models.
    Candia J; Tsang JS
    BMC Bioinformatics; 2019 Apr; 20(1):189. PubMed ID: 30991955
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Learning interpretable SVMs for biological sequence classification.
    Rätsch G; Sonnenburg S; Schäfer C
    BMC Bioinformatics; 2006 Mar; 7 Suppl 1(Suppl 1):S9. PubMed ID: 16723012
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Integrating gene set analysis and nonlinear predictive modeling of disease phenotypes using a Bayesian multitask formulation.
    Gönen M
    BMC Bioinformatics; 2016 Dec; 17(Suppl 16):0. PubMed ID: 28105911
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Random forests ensemble classifier trained with data resampling strategy to improve cardiac arrhythmia diagnosis.
    Ozçift A
    Comput Biol Med; 2011 May; 41(5):265-71. PubMed ID: 21419401
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Interpretable Decision Sets: A Joint Framework for Description and Prediction.
    Lakkaraju H; Bach SH; Jure L
    KDD; 2016 Aug; 2016():1675-1684. PubMed ID: 27853627
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A comparison of random forest and its Gini importance with standard chemometric methods for the feature selection and classification of spectral data.
    Menze BH; Kelm BM; Masuch R; Himmelreich U; Bachert P; Petrich W; Hamprecht FA
    BMC Bioinformatics; 2009 Jul; 10():213. PubMed ID: 19591666
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Prediction using step-wise L1, L2 regularization and feature selection for small data sets with large number of features.
    Demir-Kavuk O; Kamada M; Akutsu T; Knapp EW
    BMC Bioinformatics; 2011 Oct; 12():412. PubMed ID: 22026913
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Spectral embedding finds meaningful (relevant) structure in image and microarray data.
    Higgs BW; Weller J; Solka JL
    BMC Bioinformatics; 2006 Feb; 7():74. PubMed ID: 16483359
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Random generalized linear model: a highly accurate and interpretable ensemble predictor.
    Song L; Langfelder P; Horvath S
    BMC Bioinformatics; 2013 Jan; 14():5. PubMed ID: 23323760
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Prediction of periventricular leukomalacia. Part I: Selection of hemodynamic features using logistic regression and decision tree algorithms.
    Samanta B; Bird GL; Kuijpers M; Zimmerman RA; Jarvik GP; Wernovsky G; Clancy RR; Licht DJ; Gaynor JW; Nataraj C
    Artif Intell Med; 2009 Jul; 46(3):201-15. PubMed ID: 19162455
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A multicenter random forest model for effective prognosis prediction in collaborative clinical research network.
    Li J; Tian Y; Zhu Y; Zhou T; Li J; Ding K; Li J
    Artif Intell Med; 2020 Mar; 103():101814. PubMed ID: 32143809
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An ensemble learning approach to reverse-engineering transcriptional regulatory networks from time-series gene expression data.
    Ruan J; Deng Y; Perkins EJ; Zhang W
    BMC Genomics; 2009 Jul; 10 Suppl 1(Suppl 1):S8. PubMed ID: 19594885
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fuzzy jump wavelet neural network based on rule induction for dynamic nonlinear system identification with real data applications.
    Kharazihai Isfahani M; Zekri M; Marateb HR; Mañanas MA
    PLoS One; 2019; 14(12):e0224075. PubMed ID: 31816627
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A multiple kernel support vector machine scheme for feature selection and rule extraction from gene expression data of cancer tissue.
    Chen Z; Li J; Wei L
    Artif Intell Med; 2007 Oct; 41(2):161-75. PubMed ID: 17851055
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.