These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
199 related articles for article (PubMed ID: 25350128)
41. A Simple Method for Peak Alignment Using Relative Retention Time Related to an Inherent Peak in Liquid Chromatography-Mass Spectrometry-Based Metabolomics. Wang Y; Ma L; Zhang M; Chen M; Li P; He C; Yan C; Wan JB J Chromatogr Sci; 2019 Jan; 57(1):9-16. PubMed ID: 30084945 [TBL] [Abstract][Full Text] [Related]
42. Compound annotation in liquid chromatography/high-resolution mass spectrometry based metabolomics: robust adduct ion determination as a prerequisite to structure prediction in electrospray ionization mass spectra. Jaeger C; Méret M; Schmitt CA; Lisec J Rapid Commun Mass Spectrom; 2017 Aug; 31(15):1261-1266. PubMed ID: 28499062 [TBL] [Abstract][Full Text] [Related]
43. Enabling Efficient and Confident Annotation of LC-MS Metabolomics Data through MS1 Spectrum and Time Prediction. Broeckling CD; Ganna A; Layer M; Brown K; Sutton B; Ingelsson E; Peers G; Prenni JE Anal Chem; 2016 Sep; 88(18):9226-34. PubMed ID: 27560453 [TBL] [Abstract][Full Text] [Related]
44. Differential 12C-/13C-isotope dansylation labeling and fast liquid chromatography/mass spectrometry for absolute and relative quantification of the metabolome. Guo K; Li L Anal Chem; 2009 May; 81(10):3919-32. PubMed ID: 19309105 [TBL] [Abstract][Full Text] [Related]
45. Optimizing XCMS parameters for GC-MS metabolomics data processing: a case study. Dos Santos EKP; Canuto GAB Metabolomics; 2023 Mar; 19(4):26. PubMed ID: 36976375 [TBL] [Abstract][Full Text] [Related]
46. A serially coupled stationary phase method for the determination of urinary 8-oxo-7,8-dihydro-2'-deoxyguanosine by liquid chromatography ion trap tandem mass spectrometry. Rota C; Cristoni S; Trenti T; Cariani E Redox Biol; 2013; 1(1):492-7. PubMed ID: 24251117 [TBL] [Abstract][Full Text] [Related]
47. Development of a reverse-phase liquid chromatography electrospray ionization mass spectrometry method for lipidomics, improving detection of phosphatidic acid and phosphatidylserine. Ogiso H; Suzuki T; Taguchi R Anal Biochem; 2008 Apr; 375(1):124-31. PubMed ID: 18206977 [TBL] [Abstract][Full Text] [Related]
48. Time alignment algorithms based on selected mass traces for complex LC-MS data. Christin C; Hoefsloot HC; Smilde AK; Suits F; Bischoff R; Horvatovich PL J Proteome Res; 2010 Mar; 9(3):1483-95. PubMed ID: 20070124 [TBL] [Abstract][Full Text] [Related]
49. Comprehensive investigation of pathway enrichment methods for functional interpretation of LC-MS global metabolomics data. Lu Y; Pang Z; Xia J Brief Bioinform; 2023 Jan; 24(1):. PubMed ID: 36572652 [TBL] [Abstract][Full Text] [Related]
50. Theoretical evaluation of peak capacity improvements by use of liquid chromatography combined with drift tube ion mobility-mass spectrometry. Causon TJ; Hann S J Chromatogr A; 2015 Oct; 1416():47-56. PubMed ID: 26372446 [TBL] [Abstract][Full Text] [Related]
52. IDSL.IPA Characterizes the Organic Chemical Space in Untargeted LC/HRMS Data Sets. Fakouri Baygi S; Kumar Y; Barupal DK J Proteome Res; 2022 Jun; 21(6):1485-1494. PubMed ID: 35579321 [TBL] [Abstract][Full Text] [Related]
53. A novel approach to transforming a non-targeted metabolic profiling method to a pseudo-targeted method using the retention time locking gas chromatography/mass spectrometry-selected ions monitoring. Li Y; Ruan Q; Li Y; Ye G; Lu X; Lin X; Xu G J Chromatogr A; 2012 Sep; 1255():228-36. PubMed ID: 22342183 [TBL] [Abstract][Full Text] [Related]
54. Multiple ionization mass spectrometry strategy used to reveal the complexity of metabolomics. Nordström A; Want E; Northen T; Lehtiö J; Siuzdak G Anal Chem; 2008 Jan; 80(2):421-9. PubMed ID: 18085752 [TBL] [Abstract][Full Text] [Related]
55. Profiling of thiol-containing compounds by stable isotope labeling double precursor ion scan mass spectrometry. Liu P; Huang YQ; Cai WJ; Yuan BF; Feng YQ Anal Chem; 2014 Oct; 86(19):9765-73. PubMed ID: 25222826 [TBL] [Abstract][Full Text] [Related]
56. Design, implementation and multisite evaluation of a system suitability protocol for the quantitative assessment of instrument performance in liquid chromatography-multiple reaction monitoring-MS (LC-MRM-MS). Abbatiello SE; Mani DR; Schilling B; Maclean B; Zimmerman LJ; Feng X; Cusack MP; Sedransk N; Hall SC; Addona T; Allen S; Dodder NG; Ghosh M; Held JM; Hedrick V; Inerowicz HD; Jackson A; Keshishian H; Kim JW; Lyssand JS; Riley CP; Rudnick P; Sadowski P; Shaddox K; Smith D; Tomazela D; Wahlander A; Waldemarson S; Whitwell CA; You J; Zhang S; Kinsinger CR; Mesri M; Rodriguez H; Borchers CH; Buck C; Fisher SJ; Gibson BW; Liebler D; Maccoss M; Neubert TA; Paulovich A; Regnier F; Skates SJ; Tempst P; Wang M; Carr SA Mol Cell Proteomics; 2013 Sep; 12(9):2623-39. PubMed ID: 23689285 [TBL] [Abstract][Full Text] [Related]
57. Metabolomics Data Preprocessing Using ADAP and MZmine 2. Du X; Smirnov A; Pluskal T; Jia W; Sumner S Methods Mol Biol; 2020; 2104():25-48. PubMed ID: 31953811 [TBL] [Abstract][Full Text] [Related]
58. Comparative evaluation of preprocessing freeware on chromatography/mass spectrometry data for signature discovery. Coble JB; Fraga CG J Chromatogr A; 2014 Sep; 1358():155-64. PubMed ID: 25063004 [TBL] [Abstract][Full Text] [Related]
59. Tailoring noise frequency spectrum between two consecutive second derivative filtering procedures to improve liquid chromatography-mass spectrometry determinations. Wang SC; Lin CJ; Chiang SM; Yu SN Anal Chem; 2008 Mar; 80(6):2097-104. PubMed ID: 18278950 [TBL] [Abstract][Full Text] [Related]