These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 25350229)

  • 21. Free energy simulations and MM-PBSA analyses on the affinity and specificity of steroid binding to antiestradiol antibody.
    Laitinen T; Kankare JA; Peräkylä M
    Proteins; 2004 Apr; 55(1):34-43. PubMed ID: 14997538
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Absolute and relative binding free energy calculations of the interaction of biotin and its analogs with streptavidin using molecular dynamics/free energy perturbation approaches.
    Miyamoto S; Kollman PA
    Proteins; 1993 Jul; 16(3):226-45. PubMed ID: 8346190
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Molecular mechanism of the effects of salt and pH on the affinity between protein A and human immunoglobulin G1 revealed by molecular simulations.
    Huang B; Liu FF; Dong XY; Sun Y
    J Phys Chem B; 2012 Jan; 116(1):424-33. PubMed ID: 22136061
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Small-angle neutron scattering study of a monoclonal antibody using free-energy constraints.
    Clark NJ; Zhang H; Krueger S; Lee HJ; Ketchem RR; Kerwin B; Kanapuram SR; Treuheit MJ; McAuley A; Curtis JE
    J Phys Chem B; 2013 Nov; 117(45):14029-38. PubMed ID: 24171386
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Solubility Challenges in High Concentration Monoclonal Antibody Formulations: Relationship with Amino Acid Sequence and Intermolecular Interactions.
    Pindrus M; Shire SJ; Kelley RF; Demeule B; Wong R; Xu Y; Yadav S
    Mol Pharm; 2015 Nov; 12(11):3896-907. PubMed ID: 26407030
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Factors affecting the viscosity in high concentration solutions of different monoclonal antibodies.
    Yadav S; Shire SJ; Kalonia DS
    J Pharm Sci; 2010 Dec; 99(12):4812-29. PubMed ID: 20821382
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A two level hierarchical model of protein retention in ion exchange chromatography.
    Salvalaglio M; Paloni M; Guelat B; Morbidelli M; Cavallotti C
    J Chromatogr A; 2015 Sep; 1411():50-62. PubMed ID: 26278361
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Calculation of weak protein-protein interactions: the pH dependence of the second virial coefficient.
    Elcock AH; McCammon JA
    Biophys J; 2001 Feb; 80(2):613-25. PubMed ID: 11159430
    [TBL] [Abstract][Full Text] [Related]  

  • 29. High shear rheology and anisotropy in concentrated solutions of monoclonal antibodies.
    Zarraga IE; Taing R; Zarzar J; Luoma J; Hsiung J; Patel A; Lim FJ
    J Pharm Sci; 2013 Aug; 102(8):2538-49. PubMed ID: 23873347
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Specific ion effects in solutions of globular proteins: comparison between analytical models and simulation.
    Boström M; Tavares FW; Bratko D; Ninham BW
    J Phys Chem B; 2005 Dec; 109(51):24489-94. PubMed ID: 16375452
    [TBL] [Abstract][Full Text] [Related]  

  • 31. AGBNP: an analytic implicit solvent model suitable for molecular dynamics simulations and high-resolution modeling.
    Gallicchio E; Levy RM
    J Comput Chem; 2004 Mar; 25(4):479-99. PubMed ID: 14735568
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Multiscale Coarse-Grained Approach to Investigate Self-Association of Antibodies.
    Izadi S; Patapoff TW; Walters BT
    Biophys J; 2020 Jun; 118(11):2741-2754. PubMed ID: 32416079
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Full length amylin oligomer aggregation: insights from molecular dynamics simulations and implications for design of aggregation inhibitors.
    Berhanu WM; Masunov AE
    J Biomol Struct Dyn; 2014; 32(10):1651-69. PubMed ID: 24028418
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Direct observation of salt effects on molecular interactions through explicit-solvent molecular dynamics simulations: differential effects on electrostatic and hydrophobic interactions and comparisons to Poisson-Boltzmann theory.
    Thomas AS; Elcock AH
    J Am Chem Soc; 2006 Jun; 128(24):7796-806. PubMed ID: 16771493
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Understanding the molecular basis of MK2-p38α signaling complex assembly: insights into protein-protein interaction by molecular dynamics and free energy studies.
    Yang Y; Liu H; Yao X
    Mol Biosyst; 2012 Aug; 8(8):2106-18. PubMed ID: 22648002
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Immunophysical exploration of C3d-CR2(CCP1-2) interaction using molecular dynamics and electrostatics.
    Zhang L; Mallik B; Morikis D
    J Mol Biol; 2007 Jun; 369(2):567-83. PubMed ID: 17434528
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Free energy landscape of the retinol/serum retinol binding protein complex: a biological host-guest system.
    Elenewski JE; Hackett JC
    J Phys Chem B; 2010 Sep; 114(34):11315-22. PubMed ID: 20698518
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Free energy profile and mechanism of self-assembly of peptide amphiphiles based on a collective assembly coordinate.
    Yu T; Schatz GC
    J Phys Chem B; 2013 Aug; 117(30):9004-13. PubMed ID: 23822638
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Free energy calculations of glycosaminoglycan-protein interactions.
    Gandhi NS; Mancera RL
    Glycobiology; 2009 Oct; 19(10):1103-15. PubMed ID: 19643843
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Comparison of end-point continuum-solvation methods for the calculation of protein-ligand binding free energies.
    Genheden S; Ryde U
    Proteins; 2012 May; 80(5):1326-42. PubMed ID: 22274991
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.