These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

245 related articles for article (PubMed ID: 25350280)

  • 1. DEAD-box helicase proteins disrupt RNA tertiary structure through helix capture.
    Pan C; Potratz JP; Cannon B; Simpson ZB; Ziehr JL; Tijerina P; Russell R
    PLoS Biol; 2014 Oct; 12(10):e1001981. PubMed ID: 25350280
    [TBL] [Abstract][Full Text] [Related]  

  • 2. DEAD-box protein CYT-19 is activated by exposed helices in a group I intron RNA.
    Jarmoskaite I; Bhaskaran H; Seifert S; Russell R
    Proc Natl Acad Sci U S A; 2014 Jul; 111(29):E2928-36. PubMed ID: 25002474
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nonspecific binding to structured RNA and preferential unwinding of an exposed helix by the CYT-19 protein, a DEAD-box RNA chaperone.
    Tijerina P; Bhaskaran H; Russell R
    Proc Natl Acad Sci U S A; 2006 Nov; 103(45):16698-703. PubMed ID: 17075070
    [TBL] [Abstract][Full Text] [Related]  

  • 4. ATP utilization by a DEAD-box protein during refolding of a misfolded group I intron ribozyme.
    Jarmoskaite I; Tijerina P; Russell R
    J Biol Chem; 2021; 296():100132. PubMed ID: 33262215
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Involvement of DEAD-box proteins in group I and group II intron splicing. Biochemical characterization of Mss116p, ATP hydrolysis-dependent and -independent mechanisms, and general RNA chaperone activity.
    Halls C; Mohr S; Del Campo M; Yang Q; Jankowsky E; Lambowitz AM
    J Mol Biol; 2007 Jan; 365(3):835-55. PubMed ID: 17081564
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The DEAD-Box Protein CYT-19 Uses Arginine Residues in Its C-Tail To Tether RNA Substrates.
    Busa VF; Rector MJ; Russell R
    Biochemistry; 2017 Jul; 56(28):3571-3578. PubMed ID: 28650145
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Probing the mechanisms of DEAD-box proteins as general RNA chaperones: the C-terminal domain of CYT-19 mediates general recognition of RNA.
    Grohman JK; Del Campo M; Bhaskaran H; Tijerina P; Lambowitz AM; Russell R
    Biochemistry; 2007 Mar; 46(11):3013-22. PubMed ID: 17311413
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Distinct RNA-unwinding mechanisms of DEAD-box and DEAH-box RNA helicase proteins in remodeling structured RNAs and RNPs.
    Gilman B; Tijerina P; Russell R
    Biochem Soc Trans; 2017 Dec; 45(6):1313-1321. PubMed ID: 29150525
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Kinetic redistribution of native and misfolded RNAs by a DEAD-box chaperone.
    Bhaskaran H; Russell R
    Nature; 2007 Oct; 449(7165):1014-8. PubMed ID: 17960235
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Toward a molecular understanding of RNA remodeling by DEAD-box proteins.
    Russell R; Jarmoskaite I; Lambowitz AM
    RNA Biol; 2013 Jan; 10(1):44-55. PubMed ID: 22995827
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Function of the C-terminal domain of the DEAD-box protein Mss116p analyzed in vivo and in vitro.
    Mohr G; Del Campo M; Mohr S; Yang Q; Jia H; Jankowsky E; Lambowitz AM
    J Mol Biol; 2008 Feb; 375(5):1344-64. PubMed ID: 18096186
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A DEAD-box RNA helicase promotes thermodynamic equilibration of kinetically trapped RNA structures in vivo.
    Ruminski DJ; Watson PY; Mahen EM; Fedor MJ
    RNA; 2016 Mar; 22(3):416-27. PubMed ID: 26759451
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Roles of DEAD-box proteins in RNA and RNP Folding.
    Pan C; Russell R
    RNA Biol; 2010; 7(6):667-76. PubMed ID: 21045543
    [TBL] [Abstract][Full Text] [Related]  

  • 14. DEAD-box proteins as RNA helicases and chaperones.
    Jarmoskaite I; Russell R
    Wiley Interdiscip Rev RNA; 2011; 2(1):135-52. PubMed ID: 21297876
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Measurement of ATP utilization in RNA unwinding and RNA chaperone activities by DEAD-box helicase proteins.
    Jarmoskaite I; Helmers AE; Russell R
    Methods Enzymol; 2022; 673():53-76. PubMed ID: 35965018
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Unwinding by local strand separation is critical for the function of DEAD-box proteins as RNA chaperones.
    Del Campo M; Mohr S; Jiang Y; Jia H; Jankowsky E; Lambowitz AM
    J Mol Biol; 2009 Jun; 389(4):674-93. PubMed ID: 19393667
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The putative RNase P motif in the DEAD box helicase Hera is dispensable for efficient interaction with RNA and helicase activity.
    Linden MH; Hartmann RK; Klostermeier D
    Nucleic Acids Res; 2008 Oct; 36(18):5800-11. PubMed ID: 18782831
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structural basis for RNA-duplex recognition and unwinding by the DEAD-box helicase Mss116p.
    Mallam AL; Del Campo M; Gilman B; Sidote DJ; Lambowitz AM
    Nature; 2012 Oct; 490(7418):121-5. PubMed ID: 22940866
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The Azoarcus group I intron ribozyme misfolds and is accelerated for refolding by ATP-dependent RNA chaperone proteins.
    Sinan S; Yuan X; Russell R
    J Biol Chem; 2011 Oct; 286(43):37304-12. PubMed ID: 21878649
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fluorescence methods in the investigation of the DEAD-box helicase mechanism.
    Andreou AZ; Klostermeier D
    Exp Suppl; 2014; 105():161-92. PubMed ID: 25095995
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.