These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 25350393)

  • 41. Knowledge discovery via machine learning for neurodegenerative disease researchers.
    Ozyurt IB; Brown GG
    Methods Mol Biol; 2009; 569():173-96. PubMed ID: 19623491
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Gene selection in cancer classification using sparse logistic regression with Bayesian regularization.
    Cawley GC; Talbot NL
    Bioinformatics; 2006 Oct; 22(19):2348-55. PubMed ID: 16844704
    [TBL] [Abstract][Full Text] [Related]  

  • 43. XCluSim: a visual analytics tool for interactively comparing multiple clustering results of bioinformatics data.
    L'Yi S; Ko B; Shin D; Cho YJ; Lee J; Kim B; Seo J
    BMC Bioinformatics; 2015; 16 Suppl 11(Suppl 11):S5. PubMed ID: 26328893
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Systematic learning of gene functional classes from DNA array expression data by using multilayer perceptrons.
    Mateos A; Dopazo J; Jansen R; Tu Y; Gerstein M; Stolovitzky G
    Genome Res; 2002 Nov; 12(11):1703-15. PubMed ID: 12421757
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Current Projection Methods-Induced Biases at Subgroup Detection for Machine-Learning Based Data-Analysis of Biomedical Data.
    Lötsch J; Ultsch A
    Int J Mol Sci; 2019 Dec; 21(1):. PubMed ID: 31861946
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Automated optimized parameters for T-distributed stochastic neighbor embedding improve visualization and analysis of large datasets.
    Belkina AC; Ciccolella CO; Anno R; Halpert R; Spidlen J; Snyder-Cappione JE
    Nat Commun; 2019 Nov; 10(1):5415. PubMed ID: 31780669
    [TBL] [Abstract][Full Text] [Related]  

  • 47. A Pipeline for Integrated Theory and Data-Driven Modeling of Biomedical Data.
    Raghu VK; Ge X; Balajiee A; Shirer DJ; Das I; Benos PV; Chrysanthis PK
    IEEE/ACM Trans Comput Biol Bioinform; 2021; 18(3):811-822. PubMed ID: 32841121
    [TBL] [Abstract][Full Text] [Related]  

  • 48. JSOM: Jointly-evolving self-organizing maps for alignment of biological datasets and identification of related clusters.
    Lim HS; Qiu P
    PLoS Comput Biol; 2021 Mar; 17(3):e1008804. PubMed ID: 33724985
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Analysis of disease organ as a novel phenotype towards disease genetics understanding.
    Luo L; Zheng C; Wang J; Tan M; Li Y; Xu R
    J Biomed Inform; 2019 Jul; 95():103235. PubMed ID: 31207382
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Projected t-SNE for batch correction.
    Aliverti E; Tilson JL; Filer DL; Babcock B; Colaneri A; Ocasio J; Gershon TR; Wilhelmsen KC; Dunson DB
    Bioinformatics; 2020 Jun; 36(11):3522-3527. PubMed ID: 32176244
    [TBL] [Abstract][Full Text] [Related]  

  • 51. QAPgrid: a two level QAP-based approach for large-scale data analysis and visualization.
    Inostroza-Ponta M; Berretta R; Moscato P
    PLoS One; 2011 Jan; 6(1):e14468. PubMed ID: 21267077
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Identifying Cell Populations in Flow Cytometry Data Using Phenotypic Signatures.
    Pouyan MB; Nourani M
    IEEE/ACM Trans Comput Biol Bioinform; 2017; 14(4):880-891. PubMed ID: 27076456
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Mimvec: a deep learning approach for analyzing the human phenome.
    Gan M; Li W; Zeng W; Wang X; Jiang R
    BMC Syst Biol; 2017 Sep; 11(Suppl 4):76. PubMed ID: 28950906
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Multiple-cumulative probabilities used to cluster and visualize transcriptomes.
    Jia X; Liu Y; Han Q; Lu Z
    FEBS Open Bio; 2017 Dec; 7(12):2008-2020. PubMed ID: 29226087
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Reconstructing the Temporal Progression of Biological Data Using Cluster Spanning Trees.
    Eshleman R; Singh R
    IEEE Trans Nanobioscience; 2017 Mar; 16(2):140-147. PubMed ID: 28207402
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Genotype phenotype mapping in RNA viruses - disjunctive normal form learning.
    Wu C; Walsh AS; Rosenfeld R
    Pac Symp Biocomput; 2011; ():62-73. PubMed ID: 21121033
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Approximated and User Steerable tSNE for Progressive Visual Analytics.
    Pezzotti N; Lelieveldt BPF; Van Der Maaten L; Hollt T; Eisemann E; Vilanova A
    IEEE Trans Vis Comput Graph; 2017 Jul; 23(7):1739-1752. PubMed ID: 28113434
    [TBL] [Abstract][Full Text] [Related]  

  • 58. A data driven approach reveals disease similarity on a molecular level.
    Lakiotaki K; Georgakopoulos G; Castanas E; Røe OD; Borboudakis G; Tsamardinos I
    NPJ Syst Biol Appl; 2019; 5():39. PubMed ID: 31666984
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Background fluorescence and spreading error are major contributors of variability in high-dimensional flow cytometry data visualization by t-distributed stochastic neighboring embedding.
    Mazza EMC; Brummelman J; Alvisi G; Roberto A; De Paoli F; Zanon V; Colombo F; Roederer M; Lugli E
    Cytometry A; 2018 Aug; 93(8):785-792. PubMed ID: 30107099
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Regularization and grouping -omics data by GCA method: A transcriptomic case.
    Piwowar M; Kocemba-Pilarczyk KA; Piwowar P
    PLoS One; 2018; 13(11):e0206608. PubMed ID: 30383819
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.