BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 25350486)

  • 1. A radio-telemetric system to monitor cardiovascular function in rats with spinal cord transection and embryonic neural stem cell grafts.
    Hou S; Blesch A; Lu P
    J Vis Exp; 2014 Oct; (92):e51914. PubMed ID: 25350486
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Grafting Embryonic Raphe Neurons Reestablishes Serotonergic Regulation of Sympathetic Activity to Improve Cardiovascular Function after Spinal Cord Injury.
    Hou S; Saltos TM; Mironets E; Trueblood CT; Connors TM; Tom VJ
    J Neurosci; 2020 Feb; 40(6):1248-1264. PubMed ID: 31896670
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Partial restoration of cardiovascular function by embryonic neural stem cell grafts after complete spinal cord transection.
    Hou S; Tom VJ; Graham L; Lu P; Blesch A
    J Neurosci; 2013 Oct; 33(43):17138-49. PubMed ID: 24155317
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cardiovascular and temperature changes in spinal cord injured rats at rest and during autonomic dysreflexia.
    Laird AS; Carrive P; Waite PM
    J Physiol; 2006 Dec; 577(Pt 2):539-48. PubMed ID: 16973703
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Promotion of survival and differentiation of neural stem cells with fibrin and growth factor cocktails after severe spinal cord injury.
    Lu P; Graham L; Wang Y; Wu D; Tuszynski M
    J Vis Exp; 2014 Jul; (89):e50641. PubMed ID: 25145787
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Development of Cardiovascular Dysfunction in a Rat Spinal Cord Crush Model and Responses to Serotonergic Interventions.
    Trueblood CT; Iredia IW; Collyer ES; Tom VJ; Hou S
    J Neurotrauma; 2019 May; 36(9):1478-1486. PubMed ID: 30362884
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Olfactory ensheathing cells reduce duration of autonomic dysreflexia in rats with high spinal cord injury.
    Kalincík T; Choi EA; Féron F; Bianco J; Sutharsan R; Hayward I; Mackay-Sim A; Carrive P; Waite PM
    Auton Neurosci; 2010 Apr; 154(1-2):20-9. PubMed ID: 19896908
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Neuroectodermal Stem Cells Grafted into the Injured Spinal Cord Induce Both Axonal Regeneration and Morphological Restoration via Multiple Mechanisms.
    Pajer K; Bellák T; Redl H; Nógrádi A
    J Neurotrauma; 2019 Nov; 36(21):2977-2990. PubMed ID: 31111776
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characterization of ectopic colonies that form in widespread areas of the nervous system with neural stem cell transplants into the site of a severe spinal cord injury.
    Steward O; Sharp KG; Yee KM; Hatch MN; Bonner JF
    J Neurosci; 2014 Oct; 34(42):14013-21. PubMed ID: 25319698
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Rodent Neural Progenitor Cells Support Functional Recovery after Cervical Spinal Cord Contusion.
    Brock JH; Graham L; Staufenberg E; Im S; Tuszynski MH
    J Neurotrauma; 2018 May; 35(9):1069-1078. PubMed ID: 29279015
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Surgical techniques influence local environment of injured spinal cord and cause various grafted cell survival and integration.
    Hou S; Saltos TM; Iredia IW; Tom VJ
    J Neurosci Methods; 2018 Jan; 293():144-150. PubMed ID: 28947264
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Functional recovery in traumatic spinal cord injury after transplantation of multineurotrophin-expressing glial-restricted precursor cells.
    Cao Q; Xu XM; Devries WH; Enzmann GU; Ping P; Tsoulfas P; Wood PM; Bunge MB; Whittemore SR
    J Neurosci; 2005 Jul; 25(30):6947-57. PubMed ID: 16049170
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Human embryonic stem cell-derived oligodendrocyte progenitors aid in functional recovery of sensory pathways following contusive spinal cord injury.
    All AH; Bazley FA; Gupta S; Pashai N; Hu C; Pourmorteza A; Kerr C
    PLoS One; 2012; 7(10):e47645. PubMed ID: 23091637
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Diffusion tensor imaging as a biomarker for assessing neuronal stem cell treatments affecting areas distal to the site of spinal cord injury.
    Jirjis MB; Valdez C; Vedantam A; Schmit BD; Kurpad SN
    J Neurosurg Spine; 2017 Feb; 26(2):243-251. PubMed ID: 27689421
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Transplantation of ciliary neurotrophic factor-expressing adult oligodendrocyte precursor cells promotes remyelination and functional recovery after spinal cord injury.
    Cao Q; He Q; Wang Y; Cheng X; Howard RM; Zhang Y; DeVries WH; Shields CB; Magnuson DS; Xu XM; Kim DH; Whittemore SR
    J Neurosci; 2010 Feb; 30(8):2989-3001. PubMed ID: 20181596
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Human Embryonic Stem Cell-Derived Oligodendrocyte Progenitor Cells: Preclinical Efficacy and Safety in Cervical Spinal Cord Injury.
    Manley NC; Priest CA; Denham J; Wirth ED; Lebkowski JS
    Stem Cells Transl Med; 2017 Oct; 6(10):1917-1929. PubMed ID: 28834391
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Targeted Inhibition of Leucine-Rich Repeat and Immunoglobulin Domain-Containing Protein 1 in Transplanted Neural Stem Cells Promotes Neuronal Differentiation and Functional Recovery in Rats Subjected to Spinal Cord Injury.
    Chen N; Cen JS; Wang J; Qin G; Long L; Wang L; Wei F; Xiang Q; Deng DY; Wan Y
    Crit Care Med; 2016 Mar; 44(3):e146-57. PubMed ID: 26491860
    [TBL] [Abstract][Full Text] [Related]  

  • 18. NADPH-d and Fos reactivity in the rat spinal cord following experimental spinal cord injury and embryonic neural stem cell transplantation.
    Dagci T; Sengul G; Keser A; Onal A
    Life Sci; 2011 Apr; 88(17-18):746-52. PubMed ID: 21376061
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Characterization of supraspinal vasomotor pathways and autonomic dysreflexia after spinal cord injury in F344 rats.
    Hou S; Lu P; Blesch A
    Auton Neurosci; 2013 Jun; 176(1-2):54-63. PubMed ID: 23466042
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Direct comparison of cervical and high thoracic spinal cord injury reveals distinct autonomic and cardiovascular consequences.
    Lujan HL; DiCarlo SE
    J Appl Physiol (1985); 2020 Mar; 128(3):554-564. PubMed ID: 31999525
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.