These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 25350536)

  • 1. Functional role of arginine 425 in the mammalian Na⁺/H⁺ exchanger.
    Li X; Ma Y; Fliegel L
    Biochem Cell Biol; 2014 Dec; 92(6):541-6. PubMed ID: 25350536
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Characterization of human mutations in phosphorylatable amino acids of the cytosolic regulatory tail of SLC9A1.
    Alves C; Ma Y; Li X; Fliegel L
    Biochem Cell Biol; 2014 Dec; 92(6):524-9. PubMed ID: 25162926
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Proline residues in transmembrane segment IV are critical for activity, expression and targeting of the Na+/H+ exchanger isoform 1.
    Slepkov ER; Chow S; Lemieux MJ; Fliegel L
    Biochem J; 2004 Apr; 379(Pt 1):31-8. PubMed ID: 14680478
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A novel human mutation in the SLC9A1 gene results in abolition of Na+/H+ exchanger activity.
    Li X; Fliegel L
    PLoS One; 2015; 10(3):e0119453. PubMed ID: 25760855
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The intracellular distal tail of the Na+/H+ exchanger NHE1 is intrinsically disordered: implications for NHE1 trafficking.
    Nørholm AB; Hendus-Altenburger R; Bjerre G; Kjaergaard M; Pedersen SF; Kragelund BB
    Biochemistry; 2011 May; 50(17):3469-80. PubMed ID: 21425832
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structural and functional analysis of the transmembrane segment pair VI and VII of the NHE1 isoform of the Na+/H+ exchanger.
    Alves C; Lee BL; Sykes BD; Fliegel L
    Biochemistry; 2014 Jun; 53(22):3658-70. PubMed ID: 24840010
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structural and functional analysis of extracellular loop 2 of the Na(+)/H(+) exchanger.
    Lee BL; Li X; Liu Y; Sykes BD; Fliegel L
    Biochim Biophys Acta; 2009 Dec; 1788(12):2481-8. PubMed ID: 19835836
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Acidosis-mediated regulation of the NHE1 isoform of the Na⁺/H⁺ exchanger in renal cells.
    Odunewu A; Fliegel L
    Am J Physiol Renal Physiol; 2013 Aug; 305(3):F370-81. PubMed ID: 23678047
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nucleoporin 35 regulates cardiomyocyte pH homeostasis by controlling Na+-H+ exchanger-1 expression.
    Xu L; Pan L; Li J; Huang B; Feng J; Li C; Wang S; The E; Liu Y; Yuan T; Zhen L; Liang D; Liu Y; Li L; Cui Y; Jiang X; Peng L; Chen YH
    J Mol Cell Biol; 2015 Oct; 7(5):476-85. PubMed ID: 26260029
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Functional characterization of the transmembrane segment VII of the NHE1 isoform of the Na+/H+ exchanger.
    Ding J; Ng RW; Fliegel L
    Can J Physiol Pharmacol; 2007; 85(3-4):319-25. PubMed ID: 17612640
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structural changes in the C-terminal regulatory region of the Na⁺/H⁺ exchanger mediate phosphorylation induced regulation.
    Li X; Khan MF; Schriemer DC; Fliegel L
    J Mol Cell Cardiol; 2013 Aug; 61():153-63. PubMed ID: 23602949
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structural and functional analysis of critical amino acids in TMVI of the NHE1 isoform of the Na+/H+ exchanger.
    Tzeng J; Lee BL; Sykes BD; Fliegel L
    Biochim Biophys Acta; 2011 Sep; 1808(9):2327-35. PubMed ID: 21600870
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Functional role of cysteine residues in the Na+/H+ exchanger effects of mutation of cysteine residues on targeting and activity of the Na+/H+ exchanger.
    Wang H; Singh D; Fliegel L
    Arch Biochem Biophys; 1998 Oct; 358(1):116-24. PubMed ID: 9750172
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Regulation of the cardiac Na⁺/H⁺ exchanger in health and disease.
    Wakabayashi S; Hisamitsu T; Nakamura TY
    J Mol Cell Cardiol; 2013 Aug; 61():68-76. PubMed ID: 23429007
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Na+/H+ exchange is inactivated during mouse oocyte meiosis, facilitating glycine accumulation that maintains embryo cell volume.
    Zhou C; Fitzharris G; Alper SL; Baltz JM
    J Cell Physiol; 2013 Oct; 228(10):2042-53. PubMed ID: 23553550
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mechanisms of hypotonic inhibition of the sodium, proton exchanger type 1 (NHE1) in a biliary epithelial cell line (Mz-Cha-1).
    Elsing C; Gosch I; Hennings JC; Hübner CA; Herrmann T
    Acta Physiol (Oxf); 2007 Jul; 190(3):199-208. PubMed ID: 17581135
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structural and functional insights into the cardiac Na⁺/H⁺ exchanger.
    Lee BL; Sykes BD; Fliegel L
    J Mol Cell Cardiol; 2013 Aug; 61():60-7. PubMed ID: 23220151
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Protein phosphatase regulation of Na+/H+ exchanger isoform I.
    Misik AJ; Perreault K; Holmes CF; Fliegel L
    Biochemistry; 2005 Apr; 44(15):5842-52. PubMed ID: 15823043
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Molecular biology of the myocardial Na+/H+ exchanger.
    Fliegel L
    J Mol Cell Cardiol; 2008 Feb; 44(2):228-37. PubMed ID: 18191941
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Na+/H+ exchanger 1 is regulated via its lipid-interacting domain, which functions as a molecular switch: a pharmacological approach using indolocarbazole compounds.
    Shimada-Shimizu N; Hisamitsu T; Nakamura TY; Hirayama N; Wakabayashi S
    Mol Pharmacol; 2014 Jan; 85(1):18-28. PubMed ID: 24136992
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.