BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

290 related articles for article (PubMed ID: 25350583)

  • 21. Structural properties of monoclonal antibody aggregates induced by freeze-thawing and thermal stress.
    Hawe A; Kasper JC; Friess W; Jiskoot W
    Eur J Pharm Sci; 2009 Sep; 38(2):79-87. PubMed ID: 19540340
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Assessing the Utility of Circular Dichroism and FTIR Spectroscopy in Monoclonal-Antibody Comparability Studies.
    Lin JC; Glover ZK; Sreedhara A
    J Pharm Sci; 2015 Dec; 104(12):4459-4466. PubMed ID: 26505267
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Integrated system for temperature-controlled fast protein liquid chromatography. III. Continuous downstream processing of monoclonal antibodies.
    Ketterer B; Moore-Kelly C; Thomas ORT; Franzreb M
    J Chromatogr A; 2020 Jan; 1609():460429. PubMed ID: 31431354
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Conformational stability, reversibility and heat-induced aggregation of α-1-acid glycoprotein.
    Iwura T; Fukuda J; Yamazaki K; Arisaka F
    J Biochem; 2014 Dec; 156(6):345-52. PubMed ID: 25147193
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Biophysical study of bevacizumab structure and bioactivity under thermal and pH-stresses.
    Sousa F; Sarmento B; Neves-Petersen MT
    Eur J Pharm Sci; 2017 Jul; 105():127-136. PubMed ID: 28502677
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Temperature-ramped studies on the aggregation, unfolding, and interaction of a therapeutic monoclonal antibody.
    Menzen T; Friess W
    J Pharm Sci; 2014 Feb; 103(2):445-55. PubMed ID: 24382634
    [TBL] [Abstract][Full Text] [Related]  

  • 27. High throughput thermostability screening of monoclonal antibody formulations.
    He F; Hogan S; Latypov RF; Narhi LO; Razinkov VI
    J Pharm Sci; 2010 Apr; 99(4):1707-20. PubMed ID: 19780136
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Pulse Proteolysis: An Orthogonal Tool for Protein Formulation Screening.
    Iyer LK; Phanse R; Xu M; Lan W; Krause ME; Bolgar M; Hart S
    J Pharm Sci; 2019 Feb; 108(2):842-850. PubMed ID: 30257193
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A thermal-cycling method for disaggregating monoclonal antibody oligomers.
    Sadavarte RH; Ghosh R
    J Pharm Sci; 2014 Mar; 103(3):870-8. PubMed ID: 24549731
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The impact of forced degradation conditions on mAb dimer formation and subsequent influence on aggregation propensity.
    Knight MJ; Floret L; Patel N; O'Hara J; Rodriguez E
    MAbs; 2022; 14(1):2127172. PubMed ID: 36198003
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Kinetics of Monoclonal Antibody Aggregation from Dilute toward Concentrated Conditions.
    Nicoud L; Jagielski J; Pfister D; Lazzari S; Massant J; Lattuada M; Morbidelli M
    J Phys Chem B; 2016 Apr; 120(13):3267-80. PubMed ID: 27007829
    [TBL] [Abstract][Full Text] [Related]  

  • 32. High Throughput Prediction Approach for Monoclonal Antibody Aggregation at High Concentration.
    Zidar M; Šušterič A; Ravnik M; Kuzman D
    Pharm Res; 2017 Sep; 34(9):1831-1839. PubMed ID: 28593474
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Laser-induced breakdown detection of temperature-ramp generated aggregates of therapeutic monoclonal antibody.
    Menzen T; Friess W; Niessner R; Haisch C
    Eur J Pharm Biopharm; 2015 Aug; 94():463-7. PubMed ID: 26158409
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A screening tool for therapeutic monoclonal antibodies: Identifying the most stable protein and its best formulation based on thioflavin T binding.
    Kayser V; Chennamsetty N; Voynov V; Helk B; Forrer K; Trout BL
    Biotechnol J; 2012 Jan; 7(1):127-32. PubMed ID: 21953825
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Predicting accelerated aggregation rates for monoclonal antibody formulations, and challenges for low-temperature predictions.
    Brummitt RK; Nesta DP; Roberts CJ
    J Pharm Sci; 2011 Oct; 100(10):4234-43. PubMed ID: 21671226
    [TBL] [Abstract][Full Text] [Related]  

  • 36. DSF method optimization and its application in predicting protein thermal aggregation kinetics.
    Shi S; Semple A; Cheung J; Shameem M
    J Pharm Sci; 2013 Aug; 102(8):2471-83. PubMed ID: 23754479
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Application of circular dichroism and magnetic circular dichroism for assessing biopharmaceuticals formulations photo-stability and small ligands binding properties.
    Longo E; Hussain R; Siligardi G
    Int J Pharm; 2015 Mar; 480(1-2):84-91. PubMed ID: 25596417
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Aggregation stability of a monoclonal antibody during downstream processing.
    Arosio P; Barolo G; Müller-Späth T; Wu H; Morbidelli M
    Pharm Res; 2011 Aug; 28(8):1884-94. PubMed ID: 21448757
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Subvisible particle counting provides a sensitive method of detecting and quantifying aggregation of monoclonal antibody caused by freeze-thawing: insights into the roles of particles in the protein aggregation pathway.
    Barnard JG; Singh S; Randolph TW; Carpenter JF
    J Pharm Sci; 2011 Feb; 100(2):492-503. PubMed ID: 20803602
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Effects of thermal and mechanical stress on the physical stability of human growth hormone and epidermal growth factor.
    Lim JY; Kim NA; Lim DG; Kim KH; Jeong SH
    Arch Pharm Res; 2015 Aug; 38(8):1488-98. PubMed ID: 25430693
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.