These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 25350721)

  • 1. Enhanced fluorescence from CdSe/ZnS quantum dot nanophosphors embedded in a one-dimensional photonic crystal backbone structure.
    Min K; Choi S; Choi Y; Jeon H
    Nanoscale; 2014 Nov; 6(23):14531-7. PubMed ID: 25350721
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Model calculations for enhanced fluorescence in photonic crystal phosphor.
    Min K; Choi YK; Jeon H
    Opt Express; 2012 Jan; 20(3):2452-9. PubMed ID: 22330483
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A colloidal quantum dot photonic crystal phosphor: nanostructural engineering of the phosphor for enhanced color conversion.
    Min K; Jung H; Park Y; Cho KS; Roh YG; Hwang SW; Jeon H
    Nanoscale; 2017 Jun; 9(25):8703-8709. PubMed ID: 28616943
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Photonic Crystal Phosphors Integrated on a Blue LED Chip for Efficient White Light Generation.
    Lee J; Min K; Park Y; Cho KS; Jeon H
    Adv Mater; 2018 Jan; 30(3):. PubMed ID: 29194787
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Resonance in quantum dot fluorescence in a photonic bandgap liquid crystal host.
    Lukishova SG; Bissell LJ; Winkler J; Stroud CR
    Opt Lett; 2012 Apr; 37(7):1259-61. PubMed ID: 22466214
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structurally engineered colloidal quantum dot phosphor using TiO
    Lee H; Lee TY; Park Y; Cho KS; Rho YG; Choo H; Jeon H
    Light Sci Appl; 2022 Nov; 11(1):318. PubMed ID: 36319628
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Colloidal quantum dot lasers built on a passive two-dimensional photonic crystal backbone.
    Chang H; Min K; Lee M; Kang M; Park Y; Cho KS; Roh YG; Hwang SW; Jeon H
    Nanoscale; 2016 Mar; 8(12):6571-6. PubMed ID: 26935411
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Tuning quantum-dot organization in liquid crystals for robust photonic applications.
    Rodarte AL; Nuno ZS; Cao BH; Pandolfi RJ; Quint MT; Ghosh S; Hein JE; Hirst LS
    Chemphyschem; 2014 May; 15(7):1413-21. PubMed ID: 24615927
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Over 40 cd/A efficient green quantum dot electroluminescent device comprising uniquely large-sized quantum dots.
    Lee KH; Lee JH; Kang HD; Park B; Kwon Y; Ko H; Lee C; Lee J; Yang H
    ACS Nano; 2014 May; 8(5):4893-901. PubMed ID: 24758609
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Modulated fluorescence of colloidal quantum dots embedded in a porous alumina membrane.
    Xu H; Li L; Manneberg O; Russom A; Gylfason KB; Brismar H; Fu Y
    J Phys Chem B; 2013 Nov; 117(45):14151-6. PubMed ID: 24134567
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Large-scale, solution-phase growth of semiconductor nanocrystals into ultralong one-dimensional arrays and study of their electrical properties.
    Ma Y; Xue M; Shi J; Tan Y
    Nanoscale; 2014 Jun; 6(12):6828-36. PubMed ID: 24827004
    [TBL] [Abstract][Full Text] [Related]  

  • 12. CdSe/CdS/ZnS double shell nanorods with high photoluminescence efficiency and their exploitation as biolabeling probes.
    Deka S; Quarta A; Lupo MG; Falqui A; Boninelli S; Giannini C; Morello G; De Giorgi M; Lanzani G; Spinella C; Cingolani R; Pellegrino T; Manna L
    J Am Chem Soc; 2009 Mar; 131(8):2948-58. PubMed ID: 19206236
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Superposition of Quantum Confinement Energy (SQCE) model for estimating shell thickness in core-shell quantum dots: validation and comparison.
    Saran AD; Mehra A; Bellare JR
    J Colloid Interface Sci; 2012 Jul; 378(1):21-9. PubMed ID: 22578831
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Energy transfer between CdSe/ZnS core/shell quantum dots and fluorescent proteins.
    Hering VR; Gibson G; Schumacher RI; Faljoni-Alario A; Politi MJ
    Bioconjug Chem; 2007; 18(6):1705-8. PubMed ID: 17900163
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Modification of two-photon excited fluorescence from quantum dots on SiN photonic crystals.
    Xu X; Yamada T; Yokoyama S
    Opt Lett; 2010 Feb; 35(3):309-11. PubMed ID: 20125704
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Enhanced fluorescence emission from quantum dots on a photonic crystal surface.
    Ganesh N; Zhang W; Mathias PC; Chow E; Soares JA; Malyarchuk V; Smith AD; Cunningham BT
    Nat Nanotechnol; 2007 Aug; 2(8):515-20. PubMed ID: 18654350
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Investigation into the heterostructure interface of CdSe-based core-shell quantum dots using surface-enhanced Raman spectroscopy.
    Todescato F; Minotto A; Signorini R; Jasieniak JJ; Bozio R
    ACS Nano; 2013 Aug; 7(8):6649-57. PubMed ID: 23829320
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Surface-engineered quantum dots for the labeling of hydrophobic microdomains in bacterial biofilms.
    Aldeek F; Mustin C; Balan L; Roques-Carmes T; Fontaine-Aupart MP; Schneider R
    Biomaterials; 2011 Aug; 32(23):5459-70. PubMed ID: 21549423
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Thermo-optical characterization of cadmium selenide/zinc sulfide (CdSe/ZnS) quantum dots embedded in biocompatible materials.
    Pilla V; Alves LP; Iwazaki AN; Andrade AA; Antunes A; Munin E
    Appl Spectrosc; 2013 Sep; 67(9):997-1002. PubMed ID: 24067629
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Preparation of GSH capped CdSe/CdS core-shell QDs and labeling of human T-lymphocyte].
    Dong W; Ge X; Wang XY; Xu SK
    Guang Pu Xue Yu Guang Pu Fen Xi; 2010 Jan; 30(1):118-22. PubMed ID: 20302096
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.