These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 25350724)

  • 1. Template-free electrochemical synthesis of Sn nanofibers as high-performance anode materials for Na-ion batteries.
    Nam DH; Kim TH; Hong KS; Kwon HS
    ACS Nano; 2014 Nov; 8(11):11824-35. PubMed ID: 25350724
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hard carbon originated from polyvinyl chloride nanofibers as high-performance anode material for Na-ion battery.
    Bai Y; Wang Z; Wu C; Xu R; Wu F; Liu Y; Li H; Li Y; Lu J; Amine K
    ACS Appl Mater Interfaces; 2015 Mar; 7(9):5598-604. PubMed ID: 25692826
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Tin and Tin Compounds for Sodium Ion Battery Anodes: Phase Transformations and Performance.
    Li Z; Ding J; Mitlin D
    Acc Chem Res; 2015 Jun; 48(6):1657-65. PubMed ID: 26046961
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Electrospun Cu/Sn/C nanocomposite fiber anodes with superior usable lifetime for lithium- and sodium-ion batteries.
    Kim JC; Kim DW
    Chem Asian J; 2014 Nov; 9(11):3313-8. PubMed ID: 25225075
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Multi-Wall Sn/SnO
    Gao S; Wang N; Li S; Li D; Cui Z; Yue G; Liu J; Zhao X; Jiang L; Zhao Y
    Angew Chem Int Ed Engl; 2020 Feb; 59(6):2465-2472. PubMed ID: 31788929
    [TBL] [Abstract][Full Text] [Related]  

  • 6. One-step electrochemical growth of a three-dimensional Sn-Ni@PEO nanotube array as a high performance lithium-ion battery anode.
    Fan X; Dou P; Jiang A; Ma D; Xu X
    ACS Appl Mater Interfaces; 2014 Dec; 6(24):22282-8. PubMed ID: 25423255
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Simple preparation of carbon nanofibers with graphene layers perpendicular to the length direction and the excellent li-ion storage performance.
    Li T; Wei C; Wu YM; Han FD; Qi YX; Zhu HL; Lun N; Bai YJ
    ACS Appl Mater Interfaces; 2015 Mar; 7(9):5107-15. PubMed ID: 25706088
    [TBL] [Abstract][Full Text] [Related]  

  • 8. MOF-derived porous carbon nanofibers wrapping Sn nanoparticles as flexible anodes for lithium/sodium ion batteries.
    Zhu S; Huang A; Wang Q; Xu Y
    Nanotechnology; 2021 Apr; 32(16):165401. PubMed ID: 33406509
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Graphene networks anchored with sn@graphene as lithium ion battery anode.
    Qin J; He C; Zhao N; Wang Z; Shi C; Liu EZ; Li J
    ACS Nano; 2014 Feb; 8(2):1728-38. PubMed ID: 24400945
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Highly conductive, mechanically robust, and electrochemically inactive TiC/C nanofiber scaffold for high-performance silicon anode batteries.
    Yao Y; Huo K; Hu L; Liu N; Cha JJ; McDowell MT; Chu PK; Cui Y
    ACS Nano; 2011 Oct; 5(10):8346-51. PubMed ID: 21974912
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Reduced Graphene Oxide/Tin-Antimony Nanocomposites as Anode Materials for Advanced Sodium-Ion Batteries.
    Ji L; Zhou W; Chabot V; Yu A; Xiao X
    ACS Appl Mater Interfaces; 2015 Nov; 7(44):24895-901. PubMed ID: 26496231
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Tiny Li4Ti5O12 nanoparticles embedded in carbon nanofibers as high-capacity and long-life anode materials for both Li-ion and Na-ion batteries.
    Liu J; Tang K; Song K; van Aken PA; Yu Y; Maier J
    Phys Chem Chem Phys; 2013 Dec; 15(48):20813-8. PubMed ID: 24202186
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Tin-coated viral nanoforests as sodium-ion battery anodes.
    Liu Y; Xu Y; Zhu Y; Culver JN; Lundgren CA; Xu K; Wang C
    ACS Nano; 2013 Apr; 7(4):3627-34. PubMed ID: 23484633
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Electrochemically Synthesized Sb/Sb2O3 Composites as High-Capacity Anode Materials Utilizing a Reversible Conversion Reaction for Na-Ion Batteries.
    Hong KS; Nam DH; Lim SJ; Sohn D; Kim TH; Kwon H
    ACS Appl Mater Interfaces; 2015 Aug; 7(31):17264-71. PubMed ID: 26185914
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Tin phosphide-based anodes for sodium-ion batteries: synthesis via solvothermal transformation of Sn metal and phase-dependent Na storage performance.
    Shin HS; Jung KN; Jo YN; Park MS; Kim H; Lee JW
    Sci Rep; 2016 May; 6():26195. PubMed ID: 27189834
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Enhanced Electrochemical Performance of Fe0.74Sn5@Reduced Graphene Oxide Nanocomposite Anodes for Both Li-Ion and Na-Ion Batteries.
    Xin FX; Tian HJ; Wang XL; Xu W; Zheng WG; Han WQ
    ACS Appl Mater Interfaces; 2015 Apr; 7(15):7912-9. PubMed ID: 25825935
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Controlled Synthesis of Carbon Nanofibers Anchored with Zn(x)Co(3-x)O4 Nanocubes as Binder-Free Anode Materials for Lithium-Ion Batteries.
    Chen R; Hu Y; Shen Z; Chen Y; He X; Zhang X; Zhang Y
    ACS Appl Mater Interfaces; 2016 Feb; 8(4):2591-9. PubMed ID: 26761129
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Facile and Scalable Development of High-Performance Carbon-Free Tin-Based Anodes for Sodium-Ion Batteries.
    Gandharapu P; Das A; Tripathi R; Srihari V; Poswal HK; Mukhopadhyay A
    ACS Appl Mater Interfaces; 2023 Aug; 15(31):37504-37516. PubMed ID: 37506223
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Morphologically robust NiFe2O4 nanofibers as high capacity Li-ion battery anode material.
    Cherian CT; Sundaramurthy J; Reddy MV; Suresh Kumar P; Mani K; Pliszka D; Sow CH; Ramakrishna S; Chowdari BV
    ACS Appl Mater Interfaces; 2013 Oct; 5(20):9957-63. PubMed ID: 24099146
    [TBL] [Abstract][Full Text] [Related]  

  • 20. In situ deposition of hierarchical architecture assembly from Sn-filled CNTs for lithium-ion batteries.
    Hou X; Jiang H; Hu Y; Li Y; Huo J; Li C
    ACS Appl Mater Interfaces; 2013 Jul; 5(14):6672-7. PubMed ID: 23777621
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.