These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 25350848)

  • 1. From a 2DE-gel spot to protein function: lesson learned from HS1 in chronic lymphocytic leukemia.
    Apollonio B; Bertilaccio MT; Restuccia U; Ranghetti P; Barbaglio F; Ghia P; Caligaris-Cappio F; Scielzo C
    J Vis Exp; 2014 Oct; (92):e51942. PubMed ID: 25350848
    [TBL] [Abstract][Full Text] [Related]  

  • 2. HS1 has a central role in the trafficking and homing of leukemic B cells.
    Scielzo C; Bertilaccio MT; Simonetti G; Dagklis A; ten Hacken E; Fazi C; Muzio M; Caiolfa V; Kitamura D; Restuccia U; Bachi A; Rocchi M; Ponzoni M; Ghia P; Caligaris-Cappio F
    Blood; 2010 Nov; 116(18):3537-46. PubMed ID: 20530793
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Analysis of human plasma proteome by 2DE- and 2D nanoLC-based mass spectrometry.
    Choi KS; Song L; Park YM; Marshall J; Lund AL; Shion H; Park EM; Chae HZ; Park JH
    Prep Biochem Biotechnol; 2006; 36(1):3-17. PubMed ID: 16428136
    [TBL] [Abstract][Full Text] [Related]  

  • 4. HS1 complexes with cytoskeleton adapters in normal and malignant chronic lymphocytic leukemia B cells.
    Muzio M; Scielzo C; Frenquelli M; Bachi A; De Palma M; Alessio M; Ghia P; Caligaris-Cappio F
    Leukemia; 2007 Sep; 21(9):2067-70. PubMed ID: 17508001
    [No Abstract]   [Full Text] [Related]  

  • 5. How the microenvironment shapes chronic lymphocytic leukemia: the cytoskeleton connection.
    Scielzo C; Ten Hacken E; Bertilaccio MT; Muzio M; Calissano C; Ghia P; Caligaris-Cappio F
    Leuk Lymphoma; 2010 Aug; 51(8):1371-4. PubMed ID: 20687794
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Proteomics-based strategies to identify proteins relevant to chronic lymphocytic leukemia.
    Alsagaby SA; Khanna S; Hart KW; Pratt G; Fegan C; Pepper C; Brewis IA; Brennan P
    J Proteome Res; 2014 Nov; 13(11):5051-62. PubMed ID: 24983324
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Identification of enzymes and activity from two-dimensional gel electrophoresis.
    Afjehi-Sadat L; Lubec G
    Nat Protoc; 2007; 2(10):2318-24. PubMed ID: 17947972
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Targeting the LYN/HS1 signaling axis in chronic lymphocytic leukemia.
    ten Hacken E; Scielzo C; Bertilaccio MT; Scarfò L; Apollonio B; Barbaglio F; Stamatopoulos K; Ponzoni M; Ghia P; Caligaris-Cappio F
    Blood; 2013 Mar; 121(12):2264-73. PubMed ID: 23325840
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Wnt5a induces ROR1 to complex with HS1 to enhance migration of chronic lymphocytic leukemia cells.
    Hasan MK; Yu J; Chen L; Cui B; Widhopf Ii GF; Rassenti L; Shen Z; Briggs SP; Kipps TJ
    Leukemia; 2017 Dec; 31(12):2615-2622. PubMed ID: 28465529
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Protein profiling by the combination of two independent mass spectrometry techniques.
    Chen WQ; Kang SU; Lubec G
    Nat Protoc; 2006; 1(3):1446-52. PubMed ID: 17406433
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Combining high-throughput MALDI-TOF mass spectrometry and isoelectric focusing gel electrophoresis for virtual 2D gel-based proteomics.
    Lohnes K; Quebbemann NR; Liu K; Kobzeff F; Loo JA; Ogorzalek Loo RR
    Methods; 2016 Jul; 104():163-9. PubMed ID: 26826592
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Analysis of proteomic components of sera from patients with uremia by two dimensional electrophoresis and matrix assisted laser desorption/ ionization time of flight mass spectrometry.
    Wang J; Dai Y; Deng A; Liu J
    J Huazhong Univ Sci Technolog Med Sci; 2005; 25(5):604-7. PubMed ID: 16463688
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Identification of phosphorylated proteins from thrombin-activated human platelets isolated by two-dimensional gel electrophoresis by electrospray ionization-tandem mass spectrometry (ESI-MS/MS) and liquid chromatography-electrospray ionization-mass spectrometry (LC-ESI-MS).
    Immler D; Gremm D; Kirsch D; Spengler B; Presek P; Meyer HE
    Electrophoresis; 1998 May; 19(6):1015-23. PubMed ID: 9638948
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Proteomic analysis of chronic lymphocytic leukemia subtypes with mutated or unmutated Ig V(H) genes.
    Cochran DA; Evans CA; Blinco D; Burthem J; Stevenson FK; Gaskell SJ; Whetton AD
    Mol Cell Proteomics; 2003 Dec; 2(12):1331-41. PubMed ID: 14557598
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Proteomic analysis reveals differentially secreted proteins in the urine from patients with clear cell renal cell carcinoma.
    Sandim V; Pereira Dde A; Kalume DE; Oliveira-Carvalho AL; Ornellas AA; Soares MR; Alves G; Zingali RB
    Urol Oncol; 2016 Jan; 34(1):5.e11-25. PubMed ID: 26420021
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Global mapping of rat plasma proteins with a native proteomic approach using nondenaturing micro 2DE and quantitative LC-MS/MS.
    Chen S; Wen M; Bu S; Wang A; Jin Y; Tan W
    Electrophoresis; 2016 Dec; 37(23-24):3126-3136. PubMed ID: 27731504
    [TBL] [Abstract][Full Text] [Related]  

  • 17. HS1 protein is differentially expressed in chronic lymphocytic leukemia patient subsets with good or poor prognoses.
    Scielzo C; Ghia P; Conti A; Bachi A; Guida G; Geuna M; Alessio M; Caligaris-Cappio F
    J Clin Invest; 2005 Jun; 115(6):1644-50. PubMed ID: 15931393
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Methods for functional proteomic analyses.
    Rampitsch C; Bykova NV
    Methods Mol Biol; 2009; 513():93-110. PubMed ID: 19347646
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Proteomic analysis of the cell-surface membrane in chronic lymphocytic leukemia: identification of two novel proteins, BCNP1 and MIG2B.
    Boyd RS; Adam PJ; Patel S; Loader JA; Berry J; Redpath NT; Poyser HR; Fletcher GC; Burgess NA; Stamps AC; Hudson L; Smith P; Griffiths M; Willis TG; Karran EL; Oscier DG; Catovsky D; Terrett JA; Dyer MJ
    Leukemia; 2003 Aug; 17(8):1605-12. PubMed ID: 12886250
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Chaetoglobosin A preferentially induces apoptosis in chronic lymphocytic leukemia cells by targeting the cytoskeleton.
    Knudsen PB; Hanna B; Ohl S; Sellner L; Zenz T; Döhner H; Stilgenbauer S; Larsen TO; Lichter P; Seiffert M
    Leukemia; 2014 Jun; 28(6):1289-98. PubMed ID: 24280868
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.