These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

246 related articles for article (PubMed ID: 25350910)

  • 1. Relationship between neural activation and electric field distribution during deep brain stimulation.
    Astrom M; Diczfalusy E; Martens H; Wardell K
    IEEE Trans Biomed Eng; 2015 Feb; 62(2):664-672. PubMed ID: 25350910
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Tissue and electrode capacitance reduce neural activation volumes during deep brain stimulation.
    Butson CR; McIntyre CC
    Clin Neurophysiol; 2005 Oct; 116(10):2490-500. PubMed ID: 16125463
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Suppression of axonal conduction by sinusoidal stimulation in rat hippocampus in vitro.
    Jensen AL; Durand DM
    J Neural Eng; 2007 Jun; 4(2):1-16. PubMed ID: 17409475
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evaluation of methodologies for computing the deep brain stimulation volume of tissue activated.
    Duffley G; Anderson DN; Vorwerk J; Dorval AD; Butson CR
    J Neural Eng; 2019 Oct; 16(6):066024. PubMed ID: 31426036
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Estimation of electric field impact in deep brain stimulation from axon diameter distribution in the human brain.
    Johansson JD
    Biomed Phys Eng Express; 2021 Oct; 7(6):. PubMed ID: 34619674
    [No Abstract]   [Full Text] [Related]  

  • 6. Evaluating the impact of the deep brain stimulation induced electric field on subthalamic neurons: a computational modelling study.
    Yousif N; Purswani N; Bayford R; Nandi D; Bain P; Liu X
    J Neurosci Methods; 2010 Apr; 188(1):105-12. PubMed ID: 20116398
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Submyelin potassium accumulation may functionally block subsets of local axons during deep brain stimulation: a modeling study.
    Bellinger SC; Miyazawa G; Steinmetz PN
    J Neural Eng; 2008 Sep; 5(3):263-74. PubMed ID: 18566505
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Current steering to control the volume of tissue activated during deep brain stimulation.
    Butson CR; McIntyre CC
    Brain Stimul; 2008 Jan; 1(1):7-15. PubMed ID: 19142235
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Role of Soft-Tissue Heterogeneity in Computational Models of Deep Brain Stimulation.
    Howell B; McIntyre CC
    Brain Stimul; 2017; 10(1):46-50. PubMed ID: 27720186
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Antidromic propagation of action potentials in branched axons: implications for the mechanisms of action of deep brain stimulation.
    Grill WM; Cantrell MB; Robertson MS
    J Comput Neurosci; 2008 Feb; 24(1):81-93. PubMed ID: 17562157
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Artificial neural network-based rapid predictor of biological nerve fiber activation for DBS applications.
    Golabek J; Schiefer M; Wong JK; Saxena S; Patrick E
    J Neural Eng; 2023 Jan; 20(1):. PubMed ID: 36599158
    [No Abstract]   [Full Text] [Related]  

  • 12. Axonal and somatic filtering of antidromically evoked cortical excitation by simulated deep brain stimulation in rat brain.
    Chomiak T; Hu B
    J Physiol; 2007 Mar; 579(Pt 2):403-12. PubMed ID: 17170044
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sources and effects of electrode impedance during deep brain stimulation.
    Butson CR; Maks CB; McIntyre CC
    Clin Neurophysiol; 2006 Feb; 117(2):447-54. PubMed ID: 16376143
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Assessing the direct effects of deep brain stimulation using embedded axon models.
    Sotiropoulos SN; Steinmetz PN
    J Neural Eng; 2007 Jun; 4(2):107-19. PubMed ID: 17409485
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Modeling deep brain stimulation: point source approximation versus realistic representation of the electrode.
    Zhang TC; Grill WM
    J Neural Eng; 2010 Dec; 7(6):066009. PubMed ID: 21084730
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Orientation selective deep brain stimulation.
    Lehto LJ; Slopsema JP; Johnson MD; Shatillo A; Teplitzky BA; Utecht L; Adriany G; Mangia S; Sierra A; Low WC; Gröhn O; Michaeli S
    J Neural Eng; 2017 Feb; 14(1):016016. PubMed ID: 28068296
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Correspondence between the location of evoked potential generators and sites of maximal sensitivity to stimulation.
    Stecker MM
    IEEE Trans Biomed Eng; 2005 Sep; 52(9):1619-21. PubMed ID: 16189977
    [TBL] [Abstract][Full Text] [Related]  

  • 18. FastField: An open-source toolbox for efficient approximation of deep brain stimulation electric fields.
    Baniasadi M; Proverbio D; Gonçalves J; Hertel F; Husch A
    Neuroimage; 2020 Dec; 223():117330. PubMed ID: 32890746
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cellular effects of deep brain stimulation: model-based analysis of activation and inhibition.
    McIntyre CC; Grill WM; Sherman DL; Thakor NV
    J Neurophysiol; 2004 Apr; 91(4):1457-69. PubMed ID: 14668299
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Quantifying the effects of the electrode-brain interface on the crossing electric currents in deep brain recording and stimulation.
    Yousif N; Bayford R; Wang S; Liu X
    Neuroscience; 2008 Mar; 152(3):683-91. PubMed ID: 18304747
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.