These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 25350936)

  • 21. Comparative performance of three ceramic bone graft substitutes.
    Hing KA; Wilson LF; Buckland T
    Spine J; 2007; 7(4):475-90. PubMed ID: 17630146
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Bone regeneration of porous beta-tricalcium phosphate (Conduit TCP) and of biphasic calcium phosphate ceramic (Biosel) in trabecular defects in sheep.
    Bodde EW; Wolke JG; Kowalski RS; Jansen JA
    J Biomed Mater Res A; 2007 Sep; 82(3):711-22. PubMed ID: 17326225
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Guided bone regeneration using beta-tricalcium phosphate with and without fibronectin-An experimental study in rats.
    Escoda-Francolí J; Sánchez-Garcés MÁ; Gimeno-Sandig Á; Muñoz-Guzón F; Barbany-Cairó JR; Badiella-Busquets L; Gay-Escoda C
    Clin Oral Implants Res; 2018 Oct; 29(10):1038-1049. PubMed ID: 30267433
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Superior effect of MD05, beta-tricalcium phosphate coated with recombinant human growth/differentiation factor-5, compared to conventional bone substitutes in the rat calvarial defect model.
    Poehling S; Pippig SD; Hellerbrand K; Siedler M; Schütz A; Dony C
    J Periodontol; 2006 Sep; 77(9):1582-90. PubMed ID: 16945037
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Osteoconductivity and osteoinductivity of porous hydroxyapatite coatings deposited by liquid precursor plasma spraying: in vivo biological response study.
    Huang Y; He J; Gan L; Liu X; Wu Y; Wu F; Gu ZW
    Biomed Mater; 2014 Nov; 9(6):065007. PubMed ID: 25384201
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Bone Regeneration of a 3D-Printed Alloplastic and Particulate Xenogenic Graft with rhBMP-2.
    Ryu JI; Yang BE; Yi SM; Choi HG; On SW; Hong SJ; Lim HK; Byun SH
    Int J Mol Sci; 2021 Nov; 22(22):. PubMed ID: 34830400
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Assessment of bone repair in critical-size defect in the calvarium of rats after the implantation of tricalcium phosphate beta (β-TCP).
    de Freitas Silva L; de Carvalho Reis ENR; Barbara TA; Bonardi JP; Garcia IR; de Carvalho PSP; Ponzoni D
    Acta Histochem; 2017 Jul; 119(6):624-631. PubMed ID: 28732677
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Marrow-derived mesenchymal stem cells-directed bone regeneration in the dog mandible: a comparison between biphasic calcium phosphate and natural bone mineral.
    Jafarian M; Eslaminejad MB; Khojasteh A; Mashhadi Abbas F; Dehghan MM; Hassanizadeh R; Houshmand B
    Oral Surg Oral Med Oral Pathol Oral Radiol Endod; 2008 May; 105(5):e14-24. PubMed ID: 18442730
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A feasibility study evaluating an in situ formed synthetic biodegradable membrane for guided bone regeneration in dogs.
    Jung RE; Lecloux G; Rompen E; Ramel CF; Buser D; Hammerle CH
    Clin Oral Implants Res; 2009 Feb; 20(2):151-61. PubMed ID: 19191792
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Reconstruction of calvarial bone defects using poly(amino acid)/hydroxyapatite/calcium sulfate composite.
    Fan X; Peng H; Li H; Yan Y
    J Biomater Sci Polym Ed; 2019 Feb; 30(2):107-121. PubMed ID: 30518309
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Vertical bone augmentation with 3D-synthetic monetite blocks in the rabbit calvaria.
    Torres J; Tamimi F; Alkhraisat MH; Prados-Frutos JC; Rastikerdar E; Gbureck U; Barralet JE; López-Cabarcos E
    J Clin Periodontol; 2011 Dec; 38(12):1147-53. PubMed ID: 22092695
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Vertical Guided Bone Regeneration in the Rabbit Calvarium Using Porous Nanohydroxyapatite Block Grafts Coated with rhVEGF
    Liu W; Du B; Tan S; Wang Q; Li Y; Zhou L
    Int J Nanomedicine; 2020; 15():10059-10073. PubMed ID: 33335394
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Bone augmentation using a highly porous PLGA/β-TCP scaffold containing fibroblast growth factor-2.
    Yoshida T; Miyaji H; Otani K; Inoue K; Nakane K; Nishimura H; Ibara A; Shimada A; Ogawa K; Nishida E; Sugaya T; Sun L; Fugetsu B; Kawanami M
    J Periodontal Res; 2015 Apr; 50(2):265-73. PubMed ID: 24966062
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Comparative evaluation of three calcium phosphate synthetic block bone graft materials for bone regeneration in rabbit calvaria.
    Hwang JW; Park JS; Lee JS; Jung UW; Kim CS; Cho KS; Lee YK; Choi SH
    J Biomed Mater Res B Appl Biomater; 2012 Nov; 100(8):2044-52. PubMed ID: 22865716
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A glass-reinforced hydroxyapatite and surgical-grade calcium sulfate for bone regeneration: In vivo biological behavior in a sheep model.
    Cortez PP; Silva MA; Santos M; Armada-da-Silva P; Afonso A; Lopes MA; Santos JD; Maurício AC
    J Biomater Appl; 2012 Aug; 27(2):201-17. PubMed ID: 21602251
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Influence of bone morphogenetic protein and proportion of hydroxyapatite on new bone formation in biphasic calcium phosphate graft: two pilot studies in animal bony defect model.
    Yun PY; Kim YK; Jeong KI; Park JC; Choi YJ
    J Craniomaxillofac Surg; 2014 Dec; 42(8):1909-17. PubMed ID: 25443868
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Biodegradation property of beta-tricalcium phosphate-collagen composite in accordance with bone formation: a comparative study with Bio-Oss Collagen® in a rat critical-size defect model.
    Kato E; Lemler J; Sakurai K; Yamada M
    Clin Implant Dent Relat Res; 2014 Apr; 16(2):202-11. PubMed ID: 22809239
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Direct 3D powder printing of biphasic calcium phosphate scaffolds for substitution of complex bone defects.
    Castilho M; Moseke C; Ewald A; Gbureck U; Groll J; Pires I; Teßmar J; Vorndran E
    Biofabrication; 2014 Mar; 6(1):015006. PubMed ID: 24429776
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Evaluation of moldable, in situ hardening calcium phosphate bone graft substitutes.
    Schmidlin PR; Nicholls F; Kruse A; Zwahlen RA; Weber FE
    Clin Oral Implants Res; 2013 Feb; 24(2):149-57. PubMed ID: 22092691
    [TBL] [Abstract][Full Text] [Related]  

  • 40. IN VIVO PERFORMANCE OF THE EXPERIMENTAL CHITOSAN BASED BONE SUBSTITUTE--ADVANCED THERAPY MEDICINAL PRODUCT. A STUDY IN SHEEP.
    Bojar W; Kucharska M; Ciach T; Paśnik I; Korobowicz E; Patkowski K; Gruszecki T; Szymanowski M; Rzodkiewicz P
    Acta Pol Pharm; 2016; 73(1):209-17. PubMed ID: 27008815
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.