BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

401 related articles for article (PubMed ID: 25351039)

  • 1. Biofilm formation by enteric pathogens and its role in plant colonization and persistence.
    Yaron S; Römling U
    Microb Biotechnol; 2014 Nov; 7(6):496-516. PubMed ID: 25351039
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Influence of Plant Species, Tissue Type, and Temperature on the Capacity of Shiga-Toxigenic
    Merget B; Forbes KJ; Brennan F; McAteer S; Shepherd T; Strachan NJC; Holden NJ
    Appl Environ Microbiol; 2019 Jun; 85(11):. PubMed ID: 30902860
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Identification of Salmonella enterica genes with a role in persistence on lettuce leaves during cold storage by recombinase-based in vivo expression technology.
    Kroupitski Y; Brandl MT; Pinto R; Belausov E; Tamir-Ariel D; Burdman S; Sela Saldinger S
    Phytopathology; 2013 Apr; 103(4):362-72. PubMed ID: 23506363
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Roles of YcfR in Biofilm Formation in
    Kim SI; Yoon H
    Mol Plant Microbe Interact; 2019 Jun; 32(6):708-716. PubMed ID: 30566029
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Differences in biofilm formation of produce and poultry Salmonella enterica isolates and their persistence on spinach plants.
    Patel J; Singh M; Macarisin D; Sharma M; Shelton D
    Food Microbiol; 2013 Dec; 36(2):388-94. PubMed ID: 24010621
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Salmonella Persistence in Tomatoes Requires a Distinct Set of Metabolic Functions Identified by Transposon Insertion Sequencing.
    de Moraes MH; Desai P; Porwollik S; Canals R; Perez DR; Chu W; McClelland M; Teplitski M
    Appl Environ Microbiol; 2017 Mar; 83(5):. PubMed ID: 28039131
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of Plant Systemic Resistance Elicited by Biological and Chemical Inducers on the Colonization of the Lettuce and Basil Leaf Apoplast by
    Chalupowicz L; Manulis-Sasson S; Barash I; Elad Y; Rav-David D; Brandl MT
    Appl Environ Microbiol; 2021 Nov; 87(24):e0115121. PubMed ID: 34613760
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fate of Salmonella enterica and Enterohemorrhagic Escherichia coli Cells Artificially Internalized into Vegetable Seeds during Germination.
    Liu D; Cui Y; Walcott R; Chen J
    Appl Environ Microbiol; 2018 Jan; 84(1):. PubMed ID: 29079622
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Genes ycfR, sirA and yigG contribute to the surface attachment of Salmonella enterica Typhimurium and Saintpaul to fresh produce.
    Salazar JK; Deng K; Tortorello ML; Brandl MT; Wang H; Zhang W
    PLoS One; 2013; 8(2):e57272. PubMed ID: 23451197
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Curli fimbriae are conditionally required in Escherichia coli O157:H7 for initial attachment and biofilm formation.
    Carter MQ; Louie JW; Feng D; Zhong W; Brandl MT
    Food Microbiol; 2016 Aug; 57():81-9. PubMed ID: 27052705
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Attachment and Biofilm Formation by Selected Strains of Salmonella enterica and Entrohemorrhagic Escherichia coli of Fresh Produce Origin.
    Han R; Klu YAK; Chen J
    J Food Sci; 2017 Jun; 82(6):1461-1466. PubMed ID: 28493317
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Disrupting Irreversible Bacterial Adhesion and Biofilm Formation with an Engineered Enzyme.
    Mayton HM; Walker SL; Berger BW
    Appl Environ Microbiol; 2021 Jun; 87(13):e0026521. PubMed ID: 33893112
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Consecutive Treatments with a Multicomponent Sanitizer Inactivate Biofilms Formed by Escherichia coli O157:H7 and Salmonella enterica and Remove Biofilm Matrix.
    Wang R; Zhou Y; Kalchayanand N; Harhay DM; Wheeler TL
    J Food Prot; 2021 Mar; 84(3):408-417. PubMed ID: 33108462
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Variability of RNA quality extracted from biofilms of foodborne pathogens using different kits impacts mRNA quantification by qPCR.
    França A; Bento JC; Cerca N
    Curr Microbiol; 2012 Jul; 65(1):54-9. PubMed ID: 22526569
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mixed biofilm formation by Shiga toxin-producing Escherichia coli and Salmonella enterica serovar Typhimurium enhanced bacterial resistance to sanitization due to extracellular polymeric substances.
    Wang R; Kalchayanand N; Schmidt JW; Harhay DM
    J Food Prot; 2013 Sep; 76(9):1513-22. PubMed ID: 23992495
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Salmonella enterica virulence genes are required for bacterial attachment to plant tissue.
    Barak JD; Gorski L; Naraghi-Arani P; Charkowski AO
    Appl Environ Microbiol; 2005 Oct; 71(10):5685-91. PubMed ID: 16204476
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Environmental Metabolomics of the Tomato Plant Surface Provides Insights on Salmonella enterica Colonization.
    Han S; Micallef SA
    Appl Environ Microbiol; 2016 May; 82(10):3131-3142. PubMed ID: 26994076
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Predictive Population Dynamics of Escherichia coli O157:H7 and Salmonella enterica on Plants: a Mechanistic Mathematical Model Based on Weather Parameters and Bacterial State.
    Brandl MT; Ivanek R; Allende A; Munther DS
    Appl Environ Microbiol; 2023 Jul; 89(7):e0070023. PubMed ID: 37347166
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ecology of E. coli O157:H7 and Salmonella enterica in the primary vegetable production chain.
    Franz E; van Bruggen AH
    Crit Rev Microbiol; 2008; 34(3-4):143-61. PubMed ID: 18728991
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Exopolymeric substances (EPS) from Salmonella enterica: polymers, proteins and their interactions with plants and abiotic surfaces.
    Maruzani R; Sutton G; Nocerino P; Marvasi M
    J Microbiol; 2019 Jan; 57(1):1-8. PubMed ID: 30552630
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 21.