These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
161 related articles for article (PubMed ID: 25351140)
21. Diversity of the particulate methane monooxygenase gene in methanotrophic samples from different rice field soils in China and the Philippines. Hoffmann T; Horz HP; Kemnitz D; Conrad R Syst Appl Microbiol; 2002 Aug; 25(2):267-74. PubMed ID: 12353882 [TBL] [Abstract][Full Text] [Related]
22. [Effects of Wetland Reclamation on Soil Microbial Community Structure in the Sanjiang Plain]. Wang N; Gao J; Wei J; Liu Y; Zhuang XL; Zhuang GQ Huan Jing Ke Xue; 2019 May; 40(5):2375-2381. PubMed ID: 31087879 [TBL] [Abstract][Full Text] [Related]
23. [Next generation sequencing and stable isotope probing of active microorganisms responsible for aerobic methane oxidation in red paddy soils]. Zheng Y; Jia Z Wei Sheng Wu Xue Bao; 2013 Feb; 53(2):173-84. PubMed ID: 23627110 [TBL] [Abstract][Full Text] [Related]
24. Patterns in wetland microbial community composition and functional gene repertoire associated with methane emissions. He S; Malfatti SA; McFarland JW; Anderson FE; Pati A; Huntemann M; Tremblay J; Glavina del Rio T; Waldrop MP; Windham-Myers L; Tringe SG mBio; 2015 May; 6(3):e00066-15. PubMed ID: 25991679 [TBL] [Abstract][Full Text] [Related]
25. Ammonia- and methane-oxidizing microorganisms in high-altitude wetland sediments and adjacent agricultural soils. Yang Y; Shan J; Zhang J; Zhang X; Xie S; Liu Y Appl Microbiol Biotechnol; 2014 Dec; 98(24):10197-209. PubMed ID: 25030456 [TBL] [Abstract][Full Text] [Related]
26. Differences in soil microbial response to anthropogenic disturbances in Sanjiang and Momoge Wetlands, China. Wei J; Gao J; Wang N; Liu Y; Wang Y; Bai Z; Zhuang X; Zhuang G FEMS Microbiol Ecol; 2019 Aug; 95(8):. PubMed ID: 31281933 [TBL] [Abstract][Full Text] [Related]
27. Methylococcaceae are the dominant active aerobic methanotrophs in a Chinese tidal marsh. Deng Y; Gui Q; Dumont M; Han C; Deng H; Yun J; Zhong W Environ Sci Pollut Res Int; 2019 Jan; 26(1):636-646. PubMed ID: 30411293 [TBL] [Abstract][Full Text] [Related]
28. Influences of Different Halophyte Vegetation on Soil Microbial Community at Temperate Salt Marsh. Chaudhary DR; Kim J; Kang H Microb Ecol; 2018 Apr; 75(3):729-738. PubMed ID: 28986657 [TBL] [Abstract][Full Text] [Related]
29. Aerobic methanotroph diversity in Riganqiao peatlands on the Qinghai-Tibetan Plateau. Deng Y; Cui X; Lüke C; Dumont MG Environ Microbiol Rep; 2013 Aug; 5(4):566-74. PubMed ID: 23864571 [TBL] [Abstract][Full Text] [Related]
30. Diversity and activity of methanotrophs in alkaline soil from a Chinese coal mine. Han B; Chen Y; Abell G; Jiang H; Bodrossy L; Zhao J; Murrell JC; Xing XH FEMS Microbiol Ecol; 2009 Nov; 70(2):40-51. PubMed ID: 19515201 [TBL] [Abstract][Full Text] [Related]
31. Diversity of active root-associated methanotrophs of three emergent plants in a eutrophic wetland in northern China. Cui J; Zhao J; Wang Z; Cao W; Zhang S; Liu J; Bao Z AMB Express; 2020 Mar; 10(1):48. PubMed ID: 32170424 [TBL] [Abstract][Full Text] [Related]
32. Atmospheric Methane Oxidizers Are Dominated by Upland Soil Cluster Alpha in 20 Forest Soils of China. Cai Y; Zhou X; Shi L; Jia Z Microb Ecol; 2020 Nov; 80(4):859-871. PubMed ID: 32803363 [TBL] [Abstract][Full Text] [Related]
33. Active methanotrophs in two contrasting North American peatland ecosystems revealed using DNA-SIP. Gupta V; Smemo KA; Yavitt JB; Basiliko N Microb Ecol; 2012 Feb; 63(2):438-45. PubMed ID: 21728037 [TBL] [Abstract][Full Text] [Related]
34. Quantitative detection of methanotrophs in soil by novel pmoA-targeted real-time PCR assays. Kolb S; Knief C; Stubner S; Conrad R Appl Environ Microbiol; 2003 May; 69(5):2423-9. PubMed ID: 12732507 [TBL] [Abstract][Full Text] [Related]
35. Shifts in soil bacterial and archaeal communities during freeze-thaw cycles in a seasonal frozen marsh, Northeast China. Ren J; Song C; Hou A; Song Y; Zhu X; Cagle GA Sci Total Environ; 2018 Jun; 625():782-791. PubMed ID: 29306166 [TBL] [Abstract][Full Text] [Related]
36. The impact of aridification and vegetation type on changes in the community structure of methane-cycling microorganisms in Japanese wetland soils. Narihiro T; Hori T; Nagata O; Hoshino T; Yumoto I; Kamagata Y Biosci Biotechnol Biochem; 2011; 75(9):1727-34. PubMed ID: 21897040 [TBL] [Abstract][Full Text] [Related]
37. Identity of active methanotrophs in landfill cover soil as revealed by DNA-stable isotope probing. Cébron A; Bodrossy L; Chen Y; Singer AC; Thompson IP; Prosser JI; Murrell JC FEMS Microbiol Ecol; 2007 Oct; 62(1):12-23. PubMed ID: 17714486 [TBL] [Abstract][Full Text] [Related]
38. Alpha- and Gammaproteobacterial Methanotrophs Codominate the Active Methane-Oxidizing Communities in an Acidic Boreal Peat Bog. Esson KC; Lin X; Kumaresan D; Chanton JP; Murrell JC; Kostka JE Appl Environ Microbiol; 2016 Apr; 82(8):2363-2371. PubMed ID: 26873322 [TBL] [Abstract][Full Text] [Related]
39. Temporal and spatial distribution of ammonia-oxidizing organisms of two types of wetlands in Northeast China. Gao D; Liu F; Xie Y; Liang H Appl Microbiol Biotechnol; 2018 Aug; 102(16):7195-7205. PubMed ID: 29948120 [TBL] [Abstract][Full Text] [Related]
40. Seasonal change in methanotrophic diversity and populations in a rice field soil assessed by DNA-stable isotope probing and quantitative real-time PCR. Mayumi D; Yoshimoto T; Uchiyama H; Nomura N; Nakajima-Kambe T Microbes Environ; 2010; 25(3):156-63. PubMed ID: 21576868 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]