BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 25351274)

  • 1. NRfamPred: a proteome-scale two level method for prediction of nuclear receptor proteins and their sub-families.
    Kumar R; Kumari B; Srivastava A; Kumar M
    Sci Rep; 2014 Oct; 4():6810. PubMed ID: 25351274
    [TBL] [Abstract][Full Text] [Related]  

  • 2. iNR-2L: A two-level sequence-based predictor developed via Chou's 5-steps rule and general PseAAC for identifying nuclear receptors and their families.
    Kabir M; Ahmad S; Iqbal M; Hayat M
    Genomics; 2020 Jan; 112(1):276-285. PubMed ID: 30779939
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A machine learning based method for the prediction of secretory proteins using amino acid composition, their order and similarity-search.
    Garg A; Raghava GP
    In Silico Biol; 2008; 8(2):129-40. PubMed ID: 18928201
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Improving the classification of nuclear receptors with feature selection.
    Gao QB; Jin ZC; Ye XF; Wu C; Lu J; He J
    Protein Pept Lett; 2009; 16(7):823-9. PubMed ID: 19601913
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Robust and accurate prediction of protein self-interactions from amino acids sequence using evolutionary information.
    An JY; You ZH; Chen X; Huang DS; Yan G; Wang DF
    Mol Biosyst; 2016 Nov; 12(12):3702-3710. PubMed ID: 27759121
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Prediction of nuclear proteins using nuclear translocation signals proposed by probabilistic latent semantic indexing.
    Su EC; Chang JM; Cheng CW; Sung TY; Hsu WL
    BMC Bioinformatics; 2012; 13 Suppl 17(Suppl 17):S13. PubMed ID: 23282098
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Accurate prediction of nuclear receptors with conjoint triad feature.
    Wang H; Hu X
    BMC Bioinformatics; 2015 Dec; 16():402. PubMed ID: 26630876
    [TBL] [Abstract][Full Text] [Related]  

  • 8. SIMLIN: a bioinformatics tool for prediction of S-sulphenylation in the human proteome based on multi-stage ensemble-learning models.
    Wang X; Li C; Li F; Sharma VS; Song J; Webb GI
    BMC Bioinformatics; 2019 Nov; 20(1):602. PubMed ID: 31752668
    [TBL] [Abstract][Full Text] [Related]  

  • 9. NR-2L: a two-level predictor for identifying nuclear receptor subfamilies based on sequence-derived features.
    Wang P; Xiao X; Chou KC
    PLoS One; 2011; 6(8):e23505. PubMed ID: 21858146
    [TBL] [Abstract][Full Text] [Related]  

  • 10. UbiSite: incorporating two-layered machine learning method with substrate motifs to predict ubiquitin-conjugation site on lysines.
    Huang CH; Su MG; Kao HJ; Jhong JH; Weng SL; Lee TY
    BMC Syst Biol; 2016 Jan; 10 Suppl 1(Suppl 1):6. PubMed ID: 26818456
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Proteome-wide prediction and annotation of mitochondrial and sub-mitochondrial proteins by incorporating domain information.
    Kumar R; Kumari B; Kumar M
    Mitochondrion; 2018 Sep; 42():11-22. PubMed ID: 29032233
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Identification of ligand binding pockets on nuclear receptors by machine learning methods.
    Oak N; Jayaraman VK
    Protein Pept Lett; 2014; 21(8):808-14. PubMed ID: 23855664
    [TBL] [Abstract][Full Text] [Related]  

  • 13. RF-NR: Random Forest Based Approach for Improved Classification of Nuclear Receptors.
    Ismail HD; Saigo H; Kc DB
    IEEE/ACM Trans Comput Biol Bioinform; 2018; 15(6):1844-1852. PubMed ID: 29990125
    [TBL] [Abstract][Full Text] [Related]  

  • 14. VacPred: Sequence-based prediction of plant vacuole proteins using machine-learning techniques.
    Yadav AK; Singla D
    J Biosci; 2020; 45():. PubMed ID: 32975233
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Prediction of nuclear receptors with optimal pseudo amino acid composition.
    Gao QB; Jin ZC; Ye XF; Wu C; He J
    Anal Biochem; 2009 Apr; 387(1):54-9. PubMed ID: 19454254
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Automated yeast two-hybrid screening for nuclear receptor-interacting proteins.
    Albers M; Kranz H; Kober I; Kaiser C; Klink M; Suckow J; Kern R; Koegl M
    Mol Cell Proteomics; 2005 Feb; 4(2):205-13. PubMed ID: 15604093
    [TBL] [Abstract][Full Text] [Related]  

  • 17. cnnAlpha: Protein disordered regions prediction by reduced amino acid alphabets and convolutional neural networks.
    Oberti M; Vaisman II
    Proteins; 2020 Nov; 88(11):1472-1481. PubMed ID: 32535960
    [TBL] [Abstract][Full Text] [Related]  

  • 18. iAMP-CA2L: a new CNN-BiLSTM-SVM classifier based on cellular automata image for identifying antimicrobial peptides and their functional types.
    Xiao X; Shao YT; Cheng X; Stamatovic B
    Brief Bioinform; 2021 Nov; 22(6):. PubMed ID: 34086856
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Incorporating chemical sub-structures and protein evolutionary information for inferring drug-target interactions.
    Wang L; You ZH; Li LP; Yan X; Zhang W
    Sci Rep; 2020 Apr; 10(1):6641. PubMed ID: 32313024
    [TBL] [Abstract][Full Text] [Related]  

  • 20. STEM: a software tool for large-scale proteomic data analyses.
    Shinkawa T; Taoka M; Yamauchi Y; Ichimura T; Kaji H; Takahashi N; Isobe T
    J Proteome Res; 2005; 4(5):1826-31. PubMed ID: 16212438
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.