These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 25351991)

  • 1. Detection of nitroaromatic explosives with fluorescent molecular assemblies and π-gels.
    Kartha KK; Sandeep A; Praveen VK; Ajayaghosh A
    Chem Rec; 2015 Feb; 15(1):252-65. PubMed ID: 25351991
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Self-Assembled Extended π-Systems for Sensing and Security Applications.
    Praveen VK; Vedhanarayanan B; Mal A; Mishra RK; Ajayaghosh A
    Acc Chem Res; 2020 Feb; 53(2):496-507. PubMed ID: 32027125
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Self-assembled discrete molecules for sensing nitroaromatics.
    Shanmugaraju S; Mukherjee PS
    Chemistry; 2015 Apr; 21(18):6656-66. PubMed ID: 25694365
    [TBL] [Abstract][Full Text] [Related]  

  • 4. π-Electron rich small molecule sensors for the recognition of nitroaromatics.
    Shanmugaraju S; Mukherjee PS
    Chem Commun (Camb); 2015 Nov; 51(89):16014-32. PubMed ID: 26463400
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Detection of nitroaromatic explosives using a fluorescent-labeled imprinted polymer.
    Stringer RC; Gangopadhyay S; Grant SA
    Anal Chem; 2010 May; 82(10):4015-9. PubMed ID: 20402483
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fluorescence based explosive detection: from mechanisms to sensory materials.
    Sun X; Wang Y; Lei Y
    Chem Soc Rev; 2015 Nov; 44(22):8019-61. PubMed ID: 26335504
    [TBL] [Abstract][Full Text] [Related]  

  • 7. p-Quaterphenylene as an Aggregation-Induced Emission Fluorogen in Supramolecular Organogels and Fluorescent Sensors.
    Sun Y; Wang YX; Wu M; Yuan W; Chen Y
    Chem Asian J; 2017 Jan; 12(1):52-59. PubMed ID: 27996214
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Attogram sensing of trinitrotoluene with a self-assembled molecular gelator.
    Kartha KK; Babu SS; Srinivasan S; Ajayaghosh A
    J Am Chem Soc; 2012 Mar; 134(10):4834-41. PubMed ID: 22352376
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Diffusion-controlled detection of trinitrotoluene: interior nanoporous structure and low highest occupied molecular orbital level of building blocks enhance selectivity and sensitivity.
    Che Y; Gross DE; Huang H; Yang D; Yang X; Discekici E; Xue Z; Zhao H; Moore JS; Zang L
    J Am Chem Soc; 2012 Mar; 134(10):4978-82. PubMed ID: 22339204
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A fluorescent sensor for highly selective detection of nitroaromatic explosives based on a 2D, extremely stable, metal-organic framework.
    Zhang SR; Du DY; Qin JS; Bao SJ; Li SL; He WW; Lan YQ; Shen P; Su ZM
    Chemistry; 2014 Mar; 20(13):3589-94. PubMed ID: 24577888
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Recent Advancements for the Recognization of Nitroaromatic Explosives Using Calixarene Based Fluorescent Probes.
    Desai V; Panchal M; Dey S; Panjwani F; Jain VK
    J Fluoresc; 2022 Jan; 32(1):67-79. PubMed ID: 34687396
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fluorescent metal-organic framework for selective sensing of nitroaromatic explosives.
    Gole B; Bar AK; Mukherjee PS
    Chem Commun (Camb); 2011 Nov; 47(44):12137-9. PubMed ID: 21993497
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Water-soluble polymer functionalized CdTe/ZnS quantum dots: a facile ratiometric fluorescent probe for sensitive and selective detection of nitroaromatic explosives.
    Liu B; Tong C; Feng L; Wang C; He Y; Lü C
    Chemistry; 2014 Feb; 20(8):2132-7. PubMed ID: 24515606
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Luminescent metal-organic frameworks as explosive sensors.
    Banerjee D; Hu Z; Li J
    Dalton Trans; 2014 Jul; 43(28):10668-85. PubMed ID: 24921188
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fingerprinting of Nitroaromatic Explosives Realized by Aphen-functionalized Titanium Dioxide.
    Xie G; Liu B
    Sensors (Basel); 2019 May; 19(10):. PubMed ID: 31137774
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Amine Molecular Cages as Supramolecular Fluorescent Explosive Sensors: A Computational Perspective.
    Zwijnenburg MA; Berardo E; Peveler WJ; Jelfs KE
    J Phys Chem B; 2016 Jun; 120(22):5063-72. PubMed ID: 27149567
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Chiral bis(amino acid)- and bis(amino alcohol)-oxalamide gelators. Gelation properties, self-assembly motifs and chirality effects.
    Frkanec L; Zinić M
    Chem Commun (Camb); 2010 Jan; 46(4):522-37. PubMed ID: 20062853
    [TBL] [Abstract][Full Text] [Related]  

  • 18. New Polyhedral Oligomeric Silsesquioxanes-Based Fluorescent Ionic Liquids: Synthesis, Self-Assembly and Application in Sensors for Detecting Nitroaromatic Explosives.
    Li W; Wang D; Han D; Sun R; Zhang J; Feng S
    Polymers (Basel); 2018 Aug; 10(8):. PubMed ID: 30960842
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Polyfunctional Lewis acids: intriguing solid-state structure and selective detection and discrimination of nitroaromatic explosives.
    Swamy P CA; Thilagar P
    Chemistry; 2015 Jun; 21(24):8874-82. PubMed ID: 25950287
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Pyrene, Anthracene, and Naphthalene-Based Azomethines for Fluorimetric Sensing of Nitroaromatic Compounds.
    Bal M; Köse A; Özpaça Ö; Köse M
    J Fluoresc; 2023 Jul; 33(4):1443-1455. PubMed ID: 36752930
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.