These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

90 related articles for article (PubMed ID: 25352059)

  • 1. A self-powered one-touch blood extraction system: a novel polymer-capped hollow microneedle integrated with a pre-vacuum actuator.
    Li CG; Dangol M; Lee CY; Jang M; Jung H
    Lab Chip; 2015 Jan; 15(2):382-90. PubMed ID: 25352059
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An optimized hollow microneedle for minimally invasive blood extraction.
    Li CG; Lee CY; Lee K; Jung H
    Biomed Microdevices; 2013 Feb; 15(1):17-25. PubMed ID: 22833155
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A minimally invasive blood-extraction system: elastic self-recovery actuator integrated with an ultrahigh- aspect-ratio microneedle.
    Li CG; Lee K; Lee CY; Dangol M; Jung H
    Adv Mater; 2012 Aug; 24(33):4583-6. PubMed ID: 22807158
    [TBL] [Abstract][Full Text] [Related]  

  • 4. One-touch-activated blood multidiagnostic system using a minimally invasive hollow microneedle integrated with a paper-based sensor.
    Li CG; Joung HA; Noh H; Song MB; Kim MG; Jung H
    Lab Chip; 2015 Aug; 15(16):3286-92. PubMed ID: 26190447
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A minimally invasive micro sampler for quantitative sampling with an ultrahigh-aspect-ratio microneedle and a PDMS actuator.
    Liu L; Wang Y; Yao J; Yang C; Ding G
    Biomed Microdevices; 2016 Aug; 18(4):59. PubMed ID: 27372944
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Development of blood extraction system for health monitoring system.
    Tsuchiya K; Nakanishi N; Uetsuji Y; Nakamachi E
    Biomed Microdevices; 2005 Dec; 7(4):347-53. PubMed ID: 16404513
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Self-powered switch-controlled nucleic acid extraction system.
    Han K; Yoon YJ; Shin Y; Park MK
    Lab Chip; 2016 Jan; 16(1):132-41. PubMed ID: 26562630
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Integrated hollow microneedle-optofluidic biosensor for therapeutic drug monitoring in sub-nanoliter volumes.
    Ranamukhaarachchi SA; Padeste C; Dübner M; Häfeli UO; Stoeber B; Cadarso VJ
    Sci Rep; 2016 Jul; 6():29075. PubMed ID: 27380889
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The use of silicon microfabrication technology in painless blood glucose monitoring.
    Smart WH; Subramanian K
    Diabetes Technol Ther; 2000; 2(4):549-59. PubMed ID: 11469618
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A Wearable Touch-Activated Device Integrated with Hollow Microneedles for Continuous Sampling and Sensing of Dermal Interstitial Fluid.
    Abbasiasl T; Mirlou F; Mirzajani H; Bathaei MJ; Istif E; Shomalizadeh N; Cebecioğlu RE; Özkahraman EE; Yener UC; Beker L
    Adv Mater; 2024 Jan; 36(2):e2304704. PubMed ID: 37709513
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Microneedle-based device for the one-step painless collection of capillary blood samples.
    Blicharz TM; Gong P; Bunner BM; Chu LL; Leonard KM; Wakefield JA; Williams RE; Dadgar M; Tagliabue CA; El Khaja R; Marlin SL; Haghgooie R; Davis SP; Chickering DE; Bernstein H
    Nat Biomed Eng; 2018 Mar; 2(3):151-157. PubMed ID: 31015714
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Proposal of blood-collecting needle approach to semi-invasive method.
    Yamaguchi M; Kawabata Y; Yamazaki K; Kobayashi M; Ito T
    Diabetes Res Clin Pract; 2004 Dec; 66 Suppl 1():S179-83. PubMed ID: 15563973
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Blood extraction from lancet wounds using vacuum combined with skin stretching.
    Cunningham DD; Henning TP; Shain EB; Young DF; Hannig J; Barua E; Lee RC
    J Appl Physiol (1985); 2002 Mar; 92(3):1089-96. PubMed ID: 11842044
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Enhanced Interstitial Fluid Extraction and Rapid Analysis via Vacuum Tube-Integrated Microneedle Array Device.
    Xie Y; He J; He W; Iftikhar T; Zhang C; Su L; Zhang X
    Adv Sci (Weinh); 2024 Jun; 11(21):e2308716. PubMed ID: 38502884
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A blood sampling microsystem for pharmacokinetic applications: design, fabrication, and initial results.
    Li T; Barnett A; Rogers KL; Gianchandani YB
    Lab Chip; 2009 Dec; 9(24):3495-503. PubMed ID: 20024028
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An on-chip whole blood/plasma separator with bead-packed microchannel on COC polymer.
    Shim JS; Browne AW; Ahn CH
    Biomed Microdevices; 2010 Oct; 12(5):949-57. PubMed ID: 20563751
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Tower microneedle via reverse drawing lithography for innocuous intravitreal drug delivery.
    Lee CY; Lee K; You YS; Lee SH; Jung H
    Adv Healthc Mater; 2013 Jun; 2(6):812-6. PubMed ID: 23209023
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Innovative Fabrication of Hollow Microneedle Arrays Enabling Blood Sampling with a Self-Powered Microfluidic Patch.
    Van Hileghem L; Kushwaha S; Piovesan A; Verboven P; Nicolaï B; Reynaerts D; Dal Dosso F; Lammertyn J
    Micromachines (Basel); 2023 Mar; 14(3):. PubMed ID: 36985022
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Tapered conical polymer microneedles fabricated using an integrated lens technique for transdermal drug delivery.
    Park JH; Yoon YK; Choi SO; Prausnitz MR; Allen MG
    IEEE Trans Biomed Eng; 2007 May; 54(5):903-13. PubMed ID: 17518288
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An in-line microfluidic blood sampling interface between patients and saline infusion systems.
    Browne AW; Ahn CH
    Biomed Microdevices; 2011 Aug; 13(4):661-9. PubMed ID: 21465091
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.