These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 25352152)

  • 1. Plant nutrition 1: membrane transport and energetics, potassium nutrition, and sodium toxicity.
    Plant Cell; 2014 Sep; 26(9):. PubMed ID: 25352152
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Roles and Transport of Sodium and Potassium in Plants.
    Nieves-Cordones M; Al Shiblawi FR; Sentenac H
    Met Ions Life Sci; 2016; 16():291-324. PubMed ID: 26860305
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sodium-driven potassium uptake by the plant potassium transporter HKT1 and mutations conferring salt tolerance.
    Rubio F; Gassmann W; Schroeder JI
    Science; 1995 Dec; 270(5242):1660-3. PubMed ID: 7502075
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Differential activity of plasma and vacuolar membrane transporters contributes to genotypic differences in salinity tolerance in a Halophyte Species, Chenopodium quinoa.
    Bonales-Alatorre E; Pottosin I; Shabala L; Chen ZH; Zeng F; Jacobsen SE; Shabala S
    Int J Mol Sci; 2013 Apr; 14(5):9267-85. PubMed ID: 23629664
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sodium in plants: perception, signalling, and regulation of sodium fluxes.
    Maathuis FJ
    J Exp Bot; 2014 Mar; 65(3):849-58. PubMed ID: 24151301
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Sodium transporters in plants. Diverse genes and physiological functions.
    Horie T; Schroeder JI
    Plant Physiol; 2004 Sep; 136(1):2457-62. PubMed ID: 15375202
    [No Abstract]   [Full Text] [Related]  

  • 7. How do vacuolar NHX exchangers function in plant salt tolerance?
    Jiang X; Leidi EO; Pardo JM
    Plant Signal Behav; 2010 Jul; 5(7):792-5. PubMed ID: 20495345
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Transport, signaling, and homeostasis of potassium and sodium in plants.
    Adams E; Shin R
    J Integr Plant Biol; 2014 Mar; 56(3):231-49. PubMed ID: 24393374
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cellular and tissue distribution of potassium: physiological relevance, mechanisms and regulation.
    Ahmad I; Maathuis FJ
    J Plant Physiol; 2014 May; 171(9):708-14. PubMed ID: 24810768
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Plants fighting back: to transport or not to transport, this is a structural question.
    Hrmova M; Gilliham M
    Curr Opin Plant Biol; 2018 Dec; 46():68-76. PubMed ID: 30138844
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Potassium transport and plant salt tolerance.
    Shabala S; Cuin TA
    Physiol Plant; 2008 Aug; 133(4):651-69. PubMed ID: 18724408
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Doing 'business as usual' comes with a cost: evaluating energy cost of maintaining plant intracellular K
    Rubio F; Nieves-Cordones M; Horie T; Shabala S
    New Phytol; 2020 Feb; 225(3):1097-1104. PubMed ID: 30993727
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mechanisms and control of nutrient uptake in plants.
    Reid R; Hayes J
    Int Rev Cytol; 2003; 229():73-114. PubMed ID: 14669955
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Isotope techniques to study kinetics of Na+ and K+ transport under salinity conditions.
    Britto DT; Kronzucker HJ
    Methods Mol Biol; 2012; 913():389-98. PubMed ID: 22895774
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Salt intolerance in Arabidopsis: shoot and root sodium toxicity, and inhibition by sodium-plus-potassium overaccumulation.
    Álvarez-Aragón R; Haro R; Benito B; Rodríguez-Navarro A
    Planta; 2016 Jan; 243(1):97-114. PubMed ID: 26345991
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Feasibility of substituting sodium for potassium in crop plants for advanced life support systems.
    Subbarao GV; Wheeler RM; Stutte GW
    Life Support Biosph Sci; 2000; 7(3):225-32. PubMed ID: 11676437
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Leaf cell membrane stability-based mechanisms of zinc nutrition in mitigating salinity stress in rice.
    Tufail A; Li H; Naeem A; Li TX
    Plant Biol (Stuttg); 2018 Mar; 20(2):338-345. PubMed ID: 29148143
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Early effects of gibberellic acid in membrane transport in young pea seedlings].
    Lüttge U; Bauer K; Köhler D
    Biochim Biophys Acta; 1968 Apr; 150(3):452-9. PubMed ID: 5655438
    [No Abstract]   [Full Text] [Related]  

  • 19. Perspectives on the physiology and structure of inward-rectifying K+ channels in higher plants: biophysical implications for K+ uptake.
    Schroeder JI; Ward JM; Gassmann W
    Annu Rev Biophys Biomol Struct; 1994; 23():441-71. PubMed ID: 7919789
    [No Abstract]   [Full Text] [Related]  

  • 20. Improved tolerance of Acacia nilotica to salt stress by Arbuscular mycorrhiza, Glomus fasciculatum may be partly related to elevated K/Na ratios in root and shoot tissues.
    Giri B; Kapoor R; Mukerji KG
    Microb Ecol; 2007 Nov; 54(4):753-60. PubMed ID: 17372663
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.