These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 25352185)

  • 21. Molecular characterization of the arginine deiminase system in Listeria monocytogenes: regulation and role in acid tolerance.
    Ryan S; Begley M; Gahan CG; Hill C
    Environ Microbiol; 2009 Feb; 11(2):432-45. PubMed ID: 19196274
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The lmo0501 gene coding for a putative transcription activator protein in Listeria monocytogenes promotes growth under cold, osmotic and acid stress conditions.
    Michel E; Stephan R; Tasara T
    Food Microbiol; 2011 Oct; 28(7):1261-5. PubMed ID: 21839374
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Genome-wide transcriptional profiling of the cell envelope stress response and the role of LisRK and CesRK in Listeria monocytogenes.
    Nielsen PK; Andersen AZ; Mols M; van der Veen S; Abee T; Kallipolitis BH
    Microbiology (Reading); 2012 Apr; 158(Pt 4):963-974. PubMed ID: 22282521
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Listeria monocytogenes response regulators important for stress tolerance and pathogenesis.
    Kallipolitis BH; Ingmer H
    FEMS Microbiol Lett; 2001 Oct; 204(1):111-5. PubMed ID: 11682188
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Differences in pressure tolerance of Listeria monocytogenes strains are not correlated with other stress tolerances and are not based on differences in CtsR.
    Chen H; Neetoo H; Ye M; Joerger RD
    Food Microbiol; 2009 Jun; 26(4):404-8. PubMed ID: 19376462
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Rapid, transient, and proportional activation of σ(B) in response to osmotic stress in Listeria monocytogenes.
    Utratna M; Shaw I; Starr E; O'Byrne CP
    Appl Environ Microbiol; 2011 Nov; 77(21):7841-5. PubMed ID: 21890665
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A five-gene stress survival islet (SSI-1) that contributes to the growth of Listeria monocytogenes in suboptimal conditions.
    Ryan S; Begley M; Hill C; Gahan CG
    J Appl Microbiol; 2010 Sep; 109(3):984-95. PubMed ID: 20408910
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Transcription of the Listeria monocytogenes fri gene is growth-phase dependent and is repressed directly by Fur, the ferric uptake regulator.
    Fiorini F; Stefanini S; Valenti P; Chiancone E; De Biase D
    Gene; 2008 Feb; 410(1):113-21. PubMed ID: 18222616
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Global gene expression of Listeria monocytogenes to salt stress.
    Bae D; Liu C; Zhang T; Jones M; Peterson SN; Wang C
    J Food Prot; 2012 May; 75(5):906-12. PubMed ID: 22564940
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The contribution of transcriptomic and proteomic analysis in elucidating stress adaptation responses of Listeria monocytogenes.
    Soni KA; Nannapaneni R; Tasara T
    Foodborne Pathog Dis; 2011 Aug; 8(8):843-52. PubMed ID: 21495855
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Characterisation of the transcriptomes of genetically diverse Listeria monocytogenes exposed to hyperosmotic and low temperature conditions reveal global stress-adaptation mechanisms.
    Durack J; Ross T; Bowman JP
    PLoS One; 2013; 8(9):e73603. PubMed ID: 24023890
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Listeria monocytogenes shows temperature-dependent and -independent responses to salt stress, including responses that induce cross-protection against other stresses.
    Bergholz TM; Bowen B; Wiedmann M; Boor KJ
    Appl Environ Microbiol; 2012 Apr; 78(8):2602-12. PubMed ID: 22307309
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The main cold shock protein of Listeria monocytogenes belongs to the family of ferritin-like proteins.
    Hébraud M; Guzzo J
    FEMS Microbiol Lett; 2000 Sep; 190(1):29-34. PubMed ID: 10981685
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Genes encoding putative DEAD-box RNA helicases in Listeria monocytogenes EGD-e are needed for growth and motility at 3°C.
    Markkula A; Mattila M; Lindström M; Korkeala H
    Environ Microbiol; 2012 Aug; 14(8):2223-32. PubMed ID: 22564273
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Gene expression profiling of Listeria monocytogenes strain F2365 during growth in ultrahigh-temperature-processed skim milk.
    Liu Y; Ream A
    Appl Environ Microbiol; 2008 Nov; 74(22):6859-66. PubMed ID: 18806004
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Contributions of six lineage-specific internalin-like genes to invasion efficiency of Listeria monocytogenes.
    Milillo SR; Wiedmann M
    Foodborne Pathog Dis; 2009; 6(1):57-70. PubMed ID: 19014275
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Amino acid substitutions in ribosomal protein RpsU enable switching between high fitness and multiple-stress resistance in Listeria monocytogenes.
    Koomen J; Huijboom L; Ma X; Tempelaars MH; Boeren S; Zwietering MH; den Besten HMW; Abee T
    Int J Food Microbiol; 2021 Aug; 351():109269. PubMed ID: 34102570
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Listeria monocytogenes MerR-Like Regulator NmlRlm: Its Transcriptome and Role in Stress Response.
    Supa-Amornkul S; Chantratita W; Srichunrusami C; Janchompoo P; Chaturongakul S
    Foodborne Pathog Dis; 2016 Jul; 13(7):369-78. PubMed ID: 27058117
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Two-Component-System Histidine Kinases Involved in Growth of Listeria monocytogenes EGD-e at Low Temperatures.
    Pöntinen A; Markkula A; Lindström M; Korkeala H
    Appl Environ Microbiol; 2015 Jun; 81(12):3994-4004. PubMed ID: 25841007
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Roles of four putative DEAD-box RNA helicase genes in growth of Listeria monocytogenes EGD-e under heat, pH, osmotic, ethanol, and oxidative stress conditions.
    Markkula A; Lindström M; Johansson P; Björkroth J; Korkeala H
    Appl Environ Microbiol; 2012 Oct; 78(19):6875-82. PubMed ID: 22820328
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.