These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
921 related articles for article (PubMed ID: 25352491)
1. Analysis of enlarged images using time-of-flight magnetic resonance angiography, computed tomography, and conventional angiography. Heo YC; Lee HK; Yang HJ; Cho JH J Med Syst; 2014 Dec; 38(12):146. PubMed ID: 25352491 [TBL] [Abstract][Full Text] [Related]
2. Dual-energy CT angiography in the evaluation of intracranial aneurysms: image quality, radiation dose, and comparison with 3D rotational digital subtraction angiography. Zhang LJ; Wu SY; Niu JB; Zhang ZL; Wang HZ; Zhao YE; Chai X; Zhou CS; Lu GM AJR Am J Roentgenol; 2010 Jan; 194(1):23-30. PubMed ID: 20028901 [TBL] [Abstract][Full Text] [Related]
3. Multidirectional depiction of internal carotid arterial stenosis: three-dimensional time-of-flight MR angiography versus rotational and conventional digital subtraction angiography. Elgersma OE; Wüst AF; Buijs PC; van Der Graaf Y; Eikelboom BC; Mali WP Radiology; 2000 Aug; 216(2):511-6. PubMed ID: 10924579 [TBL] [Abstract][Full Text] [Related]
4. Detection and characterization of intracranial aneurysms with MR angiography: comparison of volume-rendering and maximum-intensity-projection algorithms. Mallouhi A; Felber S; Chemelli A; Dessl A; Auer A; Schocke M; Jaschke WR; Waldenberger P AJR Am J Roentgenol; 2003 Jan; 180(1):55-64. PubMed ID: 12490476 [TBL] [Abstract][Full Text] [Related]
5. Using flow information to support 3D vessel reconstruction from rotational angiography. Waechter I; Bredno J; Weese J; Barratt DC; Hawkes DJ Med Phys; 2008 Jul; 35(7):3302-16. PubMed ID: 18697555 [TBL] [Abstract][Full Text] [Related]
7. Supraaortic arteries: contrast-enhanced MR angiography at 3.0 T--highly accelerated parallel acquisition for improved spatial resolution over an extended field of view. Nael K; Villablanca JP; Pope WB; McNamara TO; Laub G; Finn JP Radiology; 2007 Feb; 242(2):600-9. PubMed ID: 17255428 [TBL] [Abstract][Full Text] [Related]
8. Three-dimensional reconstructed images after rotational angiography in the evaluation of intracranial aneurysms: surgical correlation. Tanoue S; Kiyosue H; Kenai H; Nakamura T; Yamashita M; Mori H Neurosurgery; 2000 Oct; 47(4):866-71. PubMed ID: 11014426 [TBL] [Abstract][Full Text] [Related]
9. High-spatial-resolution MR angiography of renal arteries with integrated parallel acquisitions: comparison with digital subtraction angiography and US. Schoenberg SO; Rieger J; Weber CH; Michaely HJ; Waggershauser T; Ittrich C; Dietrich O; Reiser MF Radiology; 2005 May; 235(2):687-98. PubMed ID: 15770035 [TBL] [Abstract][Full Text] [Related]
10. MR angiography with three-dimensional MR digital subtraction angiography. Frayne R; Grist TM; Korosec FR; Willig DS; Swan JS; Turski PA; Mistretta CA Top Magn Reson Imaging; 1996 Dec; 8(6):366-88. PubMed ID: 9402678 [TBL] [Abstract][Full Text] [Related]
11. Carotid artery stenosis: intraindividual correlations of 3D time-of-flight MR angiography, contrast-enhanced MR angiography, conventional DSA, and rotational angiography for detection and grading. Anzalone N; Scomazzoni F; Castellano R; Strada L; Righi C; Politi LS; Kirchin MA; Chiesa R; Scotti G Radiology; 2005 Jul; 236(1):204-13. PubMed ID: 15955853 [TBL] [Abstract][Full Text] [Related]
12. Large-cohort comparison between three-dimensional time-of-flight magnetic resonance and rotational digital subtraction angiographies in intracranial aneurysm detection. Li MH; Cheng YS; Li YD; Fang C; Chen SW; Wang W; Hu DJ; Xu HW Stroke; 2009 Sep; 40(9):3127-9. PubMed ID: 19556531 [TBL] [Abstract][Full Text] [Related]
13. Modified magnetic resonance angiography of the liver using sensitivity encoding in comparison with digital subtraction angiography and CT arterial portography. Yan SX; Liang TB; Fujii M; Kawamitsu H; Sugimura K; Zheng SS Hepatobiliary Pancreat Dis Int; 2005 May; 4(2):185-91. PubMed ID: 15908313 [TBL] [Abstract][Full Text] [Related]
15. Depiction of branch vessels arising from intracranial aneurysm sacs: Time-of-flight MR angiography versus CT angiography. Goto M; Kunimatsu A; Shojima M; Mori H; Abe O; Aoki S; Hayashi N; Gonoi W; Miyati T; Ino K; Yano K; Saito N; Ohtomo K Clin Neurol Neurosurg; 2014 Nov; 126():177-84. PubMed ID: 25270230 [TBL] [Abstract][Full Text] [Related]
16. Clinical evaluation of dual-energy bone removal in CT angiography of the head and neck: comparison with conventional bone-subtraction CT angiography. Deng K; Liu C; Ma R; Sun C; Wang XM; Ma ZT; Sun XL Clin Radiol; 2009 May; 64(5):534-41. PubMed ID: 19348851 [TBL] [Abstract][Full Text] [Related]
17. Patient with Leriche's syndrome and concomitant superior mesenteric aneurysm: evaluation with contrast-enhanced three-dimensional magnetic resonance angiography, computed tomography angiography and digital subtraction angiography. Chan HH; Tai KS; Yip LK Australas Radiol; 2005 Jun; 49(3):233-7. PubMed ID: 15932467 [TBL] [Abstract][Full Text] [Related]
18. Relationship between the contrast effects of raw data projection images from three-dimensional digital subtraction angiography and the optimal volume rendering parameters. Takagi S; Tokumitsu H; Sanada S J Digit Imaging; 2015 Jun; 28(3):368-72. PubMed ID: 25447419 [TBL] [Abstract][Full Text] [Related]
19. Carotid artery stenosis: prospective comparison of CT, three-dimensional gadolinium-enhanced MR, and conventional angiography. Randoux B; Marro B; Koskas F; Duyme M; Sahel M; Zouaoui A; Marsault C Radiology; 2001 Jul; 220(1):179-85. PubMed ID: 11425993 [TBL] [Abstract][Full Text] [Related]
20. Digital subtraction CT angiography for detection of intracranial aneurysms: comparison with three-dimensional digital subtraction angiography. Lu L; Zhang LJ; Poon CS; Wu SY; Zhou CS; Luo S; Wang M; Lu GM Radiology; 2012 Feb; 262(2):605-12. PubMed ID: 22143927 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]