BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

283 related articles for article (PubMed ID: 25352567)

  • 1. Automatic abstraction of imaging observations with their characteristics from mammography reports.
    Bozkurt S; Lipson JA; Senol U; Rubin DL
    J Am Med Inform Assoc; 2015 Apr; 22(e1):e81-92. PubMed ID: 25352567
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Using automatically extracted information from mammography reports for decision-support.
    Bozkurt S; Gimenez F; Burnside ES; Gulkesen KH; Rubin DL
    J Biomed Inform; 2016 Aug; 62():224-31. PubMed ID: 27388877
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Annotation for information extraction from mammography reports.
    Bozkurt S; Gulkesen KH; Rubin D
    Stud Health Technol Inform; 2013; 190():183-5. PubMed ID: 23823416
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The implementation of natural language processing to extract index lesions from breast magnetic resonance imaging reports.
    Liu Y; Liu Q; Han C; Zhang X; Wang X
    BMC Med Inform Decis Mak; 2019 Dec; 19(1):288. PubMed ID: 31888615
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Automated detection of ambiguity in BI-RADS assessment categories in mammography reports.
    Bozkurt S; Rubin D
    Stud Health Technol Inform; 2014; 197():35-9. PubMed ID: 24743074
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Automatic extraction of imaging observation and assessment categories from breast magnetic resonance imaging reports with natural language processing.
    Liu Y; Zhu LN; Liu Q; Han C; Zhang XD; Wang XY
    Chin Med J (Engl); 2019 Jul; 132(14):1673-1680. PubMed ID: 31268905
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Automatic information extraction from unstructured mammography reports using distributed semantics.
    Gupta A; Banerjee I; Rubin DL
    J Biomed Inform; 2018 Feb; 78():78-86. PubMed ID: 29329701
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Correlating mammographic and pathologic findings in clinical decision support using natural language processing and data mining methods.
    Patel TA; Puppala M; Ogunti RO; Ensor JE; He T; Shewale JB; Ankerst DP; Kaklamani VG; Rodriguez AA; Wong ST; Chang JC
    Cancer; 2017 Jan; 123(1):114-121. PubMed ID: 27571243
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Automated Detection of Measurements and Their Descriptors in Radiology Reports Using a Hybrid Natural Language Processing Algorithm.
    Bozkurt S; Alkim E; Banerjee I; Rubin DL
    J Digit Imaging; 2019 Aug; 32(4):544-553. PubMed ID: 31222557
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Automated extraction of BI-RADS final assessment categories from radiology reports with natural language processing.
    Sippo DA; Warden GI; Andriole KP; Lacson R; Ikuta I; Birdwell RL; Khorasani R
    J Digit Imaging; 2013 Oct; 26(5):989-94. PubMed ID: 23868515
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evaluation of an Automated Information Extraction Tool for Imaging Data Elements to Populate a Breast Cancer Screening Registry.
    Lacson R; Harris K; Brawarsky P; Tosteson TD; Onega T; Tosteson AN; Kaye A; Gonzalez I; Birdwell R; Haas JS
    J Digit Imaging; 2015 Oct; 28(5):567-75. PubMed ID: 25561069
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Proposing New RadLex Terms by Analyzing Free-Text Mammography Reports.
    Bulu H; Sippo DA; Lee JM; Burnside ES; Rubin DL
    J Digit Imaging; 2018 Oct; 31(5):596-603. PubMed ID: 29560542
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Discerning tumor status from unstructured MRI reports--completeness of information in existing reports and utility of automated natural language processing.
    Cheng LT; Zheng J; Savova GK; Erickson BJ
    J Digit Imaging; 2010 Apr; 23(2):119-32. PubMed ID: 19484309
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Information extraction from multi-institutional radiology reports.
    Hassanpour S; Langlotz CP
    Artif Intell Med; 2016 Jan; 66():29-39. PubMed ID: 26481140
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Automatic retrieval of bone fracture knowledge using natural language processing.
    Do BH; Wu AS; Maley J; Biswal S
    J Digit Imaging; 2013 Aug; 26(4):709-13. PubMed ID: 23053906
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Automated annotation and classification of BI-RADS assessment from radiology reports.
    Castro SM; Tseytlin E; Medvedeva O; Mitchell K; Visweswaran S; Bekhuis T; Jacobson RS
    J Biomed Inform; 2017 May; 69():177-187. PubMed ID: 28428140
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Natural Language Processing in Radiology: A Systematic Review.
    Pons E; Braun LM; Hunink MG; Kors JA
    Radiology; 2016 May; 279(2):329-43. PubMed ID: 27089187
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Designing an openEHR-Based Pipeline for Extracting and Standardizing Unstructured Clinical Data Using Natural Language Processing.
    Wulff A; Mast M; Hassler M; Montag S; Marschollek M; Jack T
    Methods Inf Med; 2020 Dec; 59(S 02):e64-e78. PubMed ID: 33058101
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Automatic inference of BI-RADS final assessment categories from narrative mammography report findings.
    Banerjee I; Bozkurt S; Alkim E; Sagreiya H; Kurian AW; Rubin DL
    J Biomed Inform; 2019 Apr; 92():103137. PubMed ID: 30807833
    [TBL] [Abstract][Full Text] [Related]  

  • 20. University of California, Irvine-Pathology Extraction Pipeline: the pathology extraction pipeline for information extraction from pathology reports.
    Ashish N; Dahm L; Boicey C
    Health Informatics J; 2014 Dec; 20(4):288-305. PubMed ID: 25155030
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.