BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

180 related articles for article (PubMed ID: 25352657)

  • 1. Quantitative structure-pharmacokinetic relationships for the prediction of renal clearance in humans.
    Dave RA; Morris ME
    Drug Metab Dispos; 2015 Jan; 43(1):73-81. PubMed ID: 25352657
    [TBL] [Abstract][Full Text] [Related]  

  • 2. In vitro-in vivo extrapolation method to predict human renal clearance of drugs.
    Kunze A; Huwyler J; Poller B; Gutmann H; Camenisch G
    J Pharm Sci; 2014 Mar; 103(3):994-1001. PubMed ID: 24549735
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Novel Mechanistic PBPK Model to Predict Renal Clearance in Varying Stages of CKD by Incorporating Tubular Adaptation and Dynamic Passive Reabsorption.
    Huang W; Isoherranen N
    CPT Pharmacometrics Syst Pharmacol; 2020 Oct; 9(10):571-583. PubMed ID: 32977369
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Novel minimal physiologically-based model for the prediction of passive tubular reabsorption and renal excretion clearance.
    Scotcher D; Jones C; Rostami-Hodjegan A; Galetin A
    Eur J Pharm Sci; 2016 Oct; 94():59-71. PubMed ID: 27033147
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The Influence of Drug Properties and Ontogeny of Transporters on Pediatric Renal Clearance through Glomerular Filtration and Active Secretion: a Simulation-Based Study.
    Cristea S; Krekels EHJ; Rostami-Hodjegan A; Allegaert K; Knibbe CAJ
    AAPS J; 2020 Jun; 22(4):87. PubMed ID: 32566984
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Prediction of clinical drug-drug interactions of veliparib (ABT-888) with human renal transporters (OAT1, OAT3, OCT2, MATE1, and MATE2K).
    Kikuchi R; Lao Y; Bow DA; Chiou WJ; Andracki ME; Carr RA; Voorman RL; De Morais SM
    J Pharm Sci; 2013 Dec; 102(12):4426-32. PubMed ID: 24122511
    [TBL] [Abstract][Full Text] [Related]  

  • 7. In Vivo-to-In Vitro Extrapolation of Transporter-Mediated Renal Clearance: Relative Expression Factor Versus Relative Activity Factor Approach.
    Kumar AR; Prasad B; Bhatt DK; Mathialagan S; Varma MVS; Unadkat JD
    Drug Metab Dispos; 2020 Jun; 49(6):470-478. PubMed ID: 33824168
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Prediction of human pharmacokinetics - renal metabolic and excretion clearance.
    Fagerholm U
    J Pharm Pharmacol; 2007 Nov; 59(11):1463-71. PubMed ID: 17976256
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A new simple approach to study the effect of changes in urine flow and/or urine pH on renal clearance and its applications.
    Chiou WL
    Int J Clin Pharmacol Ther Toxicol; 1986 Oct; 24(10):519-27. PubMed ID: 3781671
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Renal tubular transport of cimetidine in the isolated perfused kidney of the rat.
    Boom SP; Moons MM; Russel FG
    Drug Metab Dispos; 1994; 22(1):148-53. PubMed ID: 8149875
    [TBL] [Abstract][Full Text] [Related]  

  • 11.
    Chen J; Yang H; Zhu L; Wu Z; Li W; Tang Y; Liu G
    Chem Res Toxicol; 2020 Feb; 33(2):640-650. PubMed ID: 31957435
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Renal clearance in drug discovery and development: molecular descriptors, drug transporters and disease state.
    Feng B; LaPerle JL; Chang G; Varma MV
    Expert Opin Drug Metab Toxicol; 2010 Aug; 6(8):939-52. PubMed ID: 20433402
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Estimation of Ontogeny Functions for Renal Transporters Using a Combined Population Pharmacokinetic and Physiology-Based Pharmacokinetic Approach: Application to OAT1,3.
    Cristea S; Krekels EHJ; Allegaert K; De Paepe P; de Jaeger A; De Cock P; Knibbe CAJ
    AAPS J; 2021 May; 23(3):65. PubMed ID: 33948771
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The kidney--the body's playground for drugs: an overview of renal drug handling with selected clinical correlates.
    Perri D; Ito S; Rowsell V; Shear NH
    Can J Clin Pharmacol; 2003; 10(1):17-23. PubMed ID: 12687033
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Saturable pharmacokinetics in the renal excretion of drugs.
    van Ginneken CA; Russel FG
    Clin Pharmacokinet; 1989 Jan; 16(1):38-54. PubMed ID: 2650954
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Prediction of the Effects of Renal Impairment on Clearance for Organic Cation Drugs that Undergo Renal Secretion: A Simulation-Based Study.
    Follman KE; Morris ME
    Drug Metab Dispos; 2018 May; 46(5):758-769. PubMed ID: 29490902
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Relationship between the urinary excretion mechanisms of drugs and their physicochemical properties.
    Ito S; Ando H; Ose A; Kitamura Y; Ando T; Kusuhara H; Sugiyama Y
    J Pharm Sci; 2013 Sep; 102(9):3294-301. PubMed ID: 23712676
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Renal drug transport: a review.
    Bendayan R
    Pharmacotherapy; 1996; 16(6):971-85. PubMed ID: 8947968
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Analytical validation for a series of marker compounds used to assess renal drug elimination processes.
    McLachlan AJ; Gross AS; Beal JL; Minns I; Tett SE
    Ther Drug Monit; 2001 Feb; 23(1):39-46. PubMed ID: 11206041
    [TBL] [Abstract][Full Text] [Related]  

  • 20. New IVIVE method for the prediction of total human clearance and relative elimination pathway contributions from in vitro hepatocyte and microsome data.
    Riede J; Poller B; Umehara K; Huwyler J; Camenisch G
    Eur J Pharm Sci; 2016 Apr; 86():96-102. PubMed ID: 26948853
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.