BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

180 related articles for article (PubMed ID: 25352657)

  • 21. Quantitative Structure - Pharmacokinetic Relationships for Plasma Clearance of Basic Drugs with Consideration of the Major Elimination Pathway.
    Zhivkova ZD
    J Pharm Pharm Sci; 2017; 20(0):135-147. PubMed ID: 28554345
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Physicochemical determinants of human renal clearance.
    Varma MV; Feng B; Obach RS; Troutman MD; Chupka J; Miller HR; El-Kattan A
    J Med Chem; 2009 Aug; 52(15):4844-52. PubMed ID: 19445515
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Renal uptake of substrates for organic anion transporters Oat1 and Oat3 and organic cation transporters Oct1 and Oct2 is altered in rats with adenine-induced chronic renal failure.
    Komazawa H; Yamaguchi H; Hidaka K; Ogura J; Kobayashi M; Iseki K
    J Pharm Sci; 2013 Mar; 102(3):1086-94. PubMed ID: 23280877
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Principles and clinical application of assessing alterations in renal elimination pathways.
    Tett SE; Kirkpatrick CM; Gross AS; McLachlan AJ
    Clin Pharmacokinet; 2003; 42(14):1193-211. PubMed ID: 14606929
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Predicting human hepatic clearance from in vitro drug metabolism and transport data: a scientific and pharmaceutical perspective for assessing drug-drug interactions.
    Camenisch G; Umehara K
    Biopharm Drug Dispos; 2012 May; 33(4):179-94. PubMed ID: 22407504
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Determining the mechanisms underlying augmented renal drug clearance in the critically ill: use of exogenous marker compounds.
    Udy AA; Jarrett P; Stuart J; Lassig-Smith M; Starr T; Dunlop R; Wallis SC; Roberts JA; Lipman J
    Crit Care; 2014 Nov; 18(6):657. PubMed ID: 25432141
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Mechanisms and clinical implications of renal drug excretion.
    Masereeuw R; Russel FG
    Drug Metab Rev; 2001; 33(3-4):299-351. PubMed ID: 11768771
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Quantitative structure-pharmacokinetic relationships for drug clearance by using statistical learning methods.
    Yap CW; Li ZR; Chen YZ
    J Mol Graph Model; 2006 Mar; 24(5):383-95. PubMed ID: 16290201
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Prediction of biliary excretion in rats and humans using molecular weight and quantitative structure-pharmacokinetic relationships.
    Yang X; Gandhi YA; Duignan DB; Morris ME
    AAPS J; 2009 Sep; 11(3):511-25. PubMed ID: 19593675
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Genetic influences in the variation in renal clearance of nicotine and cotinine.
    Benowitz NL; Lessov-Schlaggar CN; Swan GE
    Clin Pharmacol Ther; 2008 Aug; 84(2):243-7. PubMed ID: 18388871
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Predicting Clearance Mechanism in Drug Discovery: Extended Clearance Classification System (ECCS).
    Varma MV; Steyn SJ; Allerton C; El-Kattan AF
    Pharm Res; 2015 Dec; 32(12):3785-802. PubMed ID: 26155985
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Renal Transporter-Mediated Drug-Drug Interactions: Are They Clinically Relevant?
    Lepist EI; Ray AS
    J Clin Pharmacol; 2016 Jul; 56 Suppl 7():S73-81. PubMed ID: 27385181
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Effects of renal impairment on transporter-mediated renal reabsorption of drugs and renal drug-drug interactions: A simulation-based study.
    Follman KE; Dave RA; Morris ME
    Biopharm Drug Dispos; 2018 Apr; 39(4):218-231. PubMed ID: 29635775
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Quantitative structure-pharmacokinetic/pharmacodynamic relationships of corticosteroids in man.
    Mager DE; Jusko WJ
    J Pharm Sci; 2002 Nov; 91(11):2441-51. PubMed ID: 12379930
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Quantitative structure-pharmacokinetic parameters relationships (QSPKR) analysis of antimicrobial agents in humans using simulated annealing k-nearest-neighbor and partial least-square analysis methods.
    Ng C; Xiao Y; Putnam W; Lum B; Tropsha A
    J Pharm Sci; 2004 Oct; 93(10):2535-44. PubMed ID: 15349962
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Prediction of human renal clearance from preclinical species for a diverse set of drugs that exhibit both active secretion and net reabsorption.
    Paine SW; Ménochet K; Denton R; McGinnity DF; Riley RJ
    Drug Metab Dispos; 2011 Jun; 39(6):1008-13. PubMed ID: 21357702
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Effect of Chronic Kidney Disease on the Renal Secretion via Organic Anion Transporters 1/3: Implications for Physiologically-Based Pharmacokinetic Modeling and Dose Adjustment.
    Tan SPF; Scotcher D; Rostami-Hodjegan A; Galetin A
    Clin Pharmacol Ther; 2022 Sep; 112(3):643-652. PubMed ID: 35569107
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Mechanistic Models as Framework for Understanding Biomarker Disposition: Prediction of Creatinine-Drug Interactions.
    Scotcher D; Arya V; Yang X; Zhao P; Zhang L; Huang SM; Rostami-Hodjegan A; Galetin A
    CPT Pharmacometrics Syst Pharmacol; 2020 May; 9(5):282-293. PubMed ID: 32410382
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Quantitative Structure-Pharmacokinetic Relationships for drug distribution properties by using general regression neural network.
    Yap CW; Chen YZ
    J Pharm Sci; 2005 Jan; 94(1):153-68. PubMed ID: 15761939
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Prediction of human clearance from animal data and molecular structural parameters using multivariate regression analysis.
    Wajima T; Fukumura K; Yano Y; Oguma T
    J Pharm Sci; 2002 Dec; 91(12):2489-99. PubMed ID: 12434392
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.