These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 2535266)

  • 1. Intraparenchymal striatal transplants required for maintenance of behavioral recovery in an animal model of Huntington's disease.
    Sanberg PR; Giòrdano M; Henault MA; Nash DR; Ragozzino ME; Hagenmeyer-Houser SH
    J Neural Transplant; 1989; 1(1):23-31. PubMed ID: 2535266
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Intraparenchymal fetal striatal transplants and recovery in kainic acid lesioned rats.
    Giordano M; Hagenmeyer-Houser SH; Sanberg PR
    Brain Res; 1988 Apr; 446(1):183-8. PubMed ID: 2967100
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Neural grafts and pharmacological intervention in a model of Huntington's disease.
    Giordano M; Ford LM; Shipley MT; Sanberg PR
    Brain Res Bull; 1990 Sep; 25(3):453-65. PubMed ID: 1963345
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An evaluation of the possible protective effects of neonatal striatal transplants against kainic acid-induced lesions.
    Nash DR; Kaplan SM; Norman AB; Sanberg PR
    J Neural Transplant Plast; 1991; 2(1):75-9. PubMed ID: 1831050
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fetal striatal transplants restore electrophysiological sensitivity to dopamine in the lesioned striatum of rats with experimental Huntington's disease.
    Chen GJ; Jeng CH; Lin SZ; Tsai SH; Wang Y; Chiang YH
    J Biomed Sci; 2002; 9(4):303-10. PubMed ID: 12145527
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Behavioral recovery after transplantation into a rat model of Huntington's disease: dependence on anatomical connectivity and extensive postoperative training.
    Brasted PJ; Watts C; Torres EM; Robbins TW; Dunnett SB
    Behav Neurosci; 2000 Apr; 114(2):431-6. PubMed ID: 10832803
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Donor age dependent graft development and recovery in a rat model of Huntington's disease: histological and behavioral analysis.
    Schackel S; Pauly MC; Piroth T; Nikkhah G; Döbrössy MD
    Behav Brain Res; 2013 Nov; 256():56-63. PubMed ID: 23916743
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Locomotor hyperactivity: effects of multiple striatal transplants in an animal model of Huntington's disease.
    Sanberg PR; Henault MA; Deckel AW
    Pharmacol Biochem Behav; 1986 Jul; 25(1):297-300. PubMed ID: 2944130
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Human fetal striatal transplantation in an excitotoxic lesioned model of Huntington's disease.
    Sanberg PR; Borlongan CV; Koutouzis TK; Norgren RB; Cahill DW; Freeman TB
    Ann N Y Acad Sci; 1997 Dec; 831():452-60. PubMed ID: 9616734
    [No Abstract]   [Full Text] [Related]  

  • 10. Fetal striatal tissue grafts into excitotoxin-lesioned striatum: pharmacological and behavioral aspects.
    Norman AB; Giordano M; Sanberg PR
    Pharmacol Biochem Behav; 1989 Sep; 34(1):139-47. PubMed ID: 2626445
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Bone marrow mesenchymal stem cells can improve the motor function of a Huntington's disease rat model.
    Jiang Y; Lv H; Huang S; Tan H; Zhang Y; Li H
    Neurol Res; 2011 Apr; 33(3):331-7. PubMed ID: 21513650
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Striatal allografts in patients with Huntington's disease: impact of diminished astrocytes and vascularization on graft viability.
    Cisbani G; Freeman TB; Soulet D; Saint-Pierre M; Gagnon D; Parent M; Hauser RA; Barker RA; Cicchetti F
    Brain; 2013 Feb; 136(Pt 2):433-43. PubMed ID: 23378216
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Protective effect of intrastriatal grafts in an experimental model of Huntington's disease. Behavioral and morphological correlation].
    Levivier M; Pearlman SH; Gash DM; Brotchi J
    Neurochirurgie; 1991; 37(3):148-59. PubMed ID: 1831884
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Training specificity, graft development and graft-mediated functional recovery in a rodent model of Huntington's disease.
    Döbrössy MD; Dunnett SB
    Neuroscience; 2005; 132(3):543-52. PubMed ID: 15837116
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Transplanted adult neural progenitor cells survive, differentiate and reduce motor function impairment in a rodent model of Huntington's disease.
    Vazey EM; Chen K; Hughes SM; Connor B
    Exp Neurol; 2006 Jun; 199(2):384-96. PubMed ID: 16626705
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Human neural stem cell transplants improve motor function in a rat model of Huntington's disease.
    McBride JL; Behrstock SP; Chen EY; Jakel RJ; Siegel I; Svendsen CN; Kordower JH
    J Comp Neurol; 2004 Jul; 475(2):211-9. PubMed ID: 15211462
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Anatomical predictors of behavioral recovery following fetal striatal transplants.
    Deckel AW; Moran TH; Coyle JT; Sanberg PR; Robinson RG
    Brain Res; 1986 Feb; 365(2):249-58. PubMed ID: 3947993
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Bilateral fetal striatal grafts in the 3-nitropropionic acid-induced hypoactive model of Huntington's disease.
    Borlongan CV; Koutouzis TK; Poulos SG; Saporta S; Sanberg PR
    Cell Transplant; 1998; 7(2):131-5. PubMed ID: 9588595
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Will fetal striatal transplants correct the akinetic end-stage of Huntington's disease?
    Borlongan CV; Polgar S; Freeman TB; Hauser RA; Cahill DW; Sanberg PR
    Neurodegeneration; 1996 Jun; 5(2):189-92. PubMed ID: 8819140
    [No Abstract]   [Full Text] [Related]  

  • 20. Cell transplantation for Huntington's disease.
    Sanberg PR; Koutouzis TK; Freeman TB; Emerich DF; Bertino AM; Cahill DW
    Transplant Proc; 1992 Dec; 24(6):3015-6. PubMed ID: 1361271
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 9.