BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

186 related articles for article (PubMed ID: 25352797)

  • 21. When will a stuttering moment occur? The determining role of speech motor preparation.
    Vanhoutte S; Cosyns M; van Mierlo P; Batens K; Corthals P; De Letter M; Van Borsel J; Santens P
    Neuropsychologia; 2016 Jun; 86():93-102. PubMed ID: 27106391
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Verbal Response Inhibition in Adults Who Stutter.
    Treleaven SB; Coalson GA
    J Speech Lang Hear Res; 2021 Sep; 64(9):3382-3397. PubMed ID: 34403265
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Speaking-related changes in cortical functional connectivity associated with assisted and spontaneous recovery from developmental stuttering.
    Kell CA; Neumann K; Behrens M; von Gudenberg AW; Giraud AL
    J Fluency Disord; 2018 Mar; 55():135-144. PubMed ID: 28216127
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Australian normative data for the Overall Assessment of the Speaker's Experience of Stuttering.
    Blumgart E; Tran Y; Yaruss JS; Craig A
    J Fluency Disord; 2012 Jun; 37(2):83-90. PubMed ID: 22531284
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Dysfluency and involuntary movements: a new look at developmental stuttering.
    Mulligan HF; Anderson TJ; Jones RD; Williams MJ; Donaldson IM
    Int J Neurosci; 2001 Jul; 109(1-2):23-46. PubMed ID: 11699339
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Larger reported impact of stuttering in teenage females, compared to males - A comparison of teenagers' result on Overall Assessment of the Speaker's Experience of Stuttering (OASES).
    Samson I; Lindström E; Sand A; Herlitz A; Schalling E
    J Fluency Disord; 2021 Mar; 67():105822. PubMed ID: 33348210
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Brain correlates of stuttering and syllable production. A PET performance-correlation analysis.
    Fox PT; Ingham RJ; Ingham JC; Zamarripa F; Xiong JH; Lancaster JL
    Brain; 2000 Oct; 123 ( Pt 10)():1985-2004. PubMed ID: 11004117
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Modulation of auditory processing during speech movement planning is limited in adults who stutter.
    Daliri A; Max L
    Brain Lang; 2015 Apr; 143():59-68. PubMed ID: 25796060
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Swedish outcomes of the Overall Assessment of the Speaker's Experience of Stuttering in an international perspective.
    Lindström E; Nilsson E; Nilsson J; Schödin I; Strömberg N; Österberg S; Yaruss JS; Samson I
    Logoped Phoniatr Vocol; 2020 Dec; 45(4):181-189. PubMed ID: 31771383
    [No Abstract]   [Full Text] [Related]  

  • 30. Stuttering generalization self-measure: Preliminary development of a self-measuring tool.
    Alameer M; Meteyard L; Ward D
    J Fluency Disord; 2017 Sep; 53():41-51. PubMed ID: 28870333
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Stuttering severity relates to frontotemporal low-beta synchronization during pre-speech preparation.
    Korzeczek A; Neef NE; Steinmann I; Paulus W; Sommer M
    Clin Neurophysiol; 2022 Jun; 138():84-96. PubMed ID: 35366481
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Left posterior-dorsal area 44 couples with parietal areas to promote speech fluency, while right area 44 activity promotes the stopping of motor responses.
    Neef NE; Bütfering C; Anwander A; Friederici AD; Paulus W; Sommer M
    Neuroimage; 2016 Nov; 142():628-644. PubMed ID: 27542724
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Anomalous morphology in left hemisphere motor and premotor cortex of children who stutter.
    Garnett EO; Chow HM; Nieto-Castañón A; Tourville JA; Guenther FH; Chang SE
    Brain; 2018 Sep; 141(9):2670-2684. PubMed ID: 30084910
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Anomalous network architecture of the resting brain in children who stutter.
    Chang SE; Angstadt M; Chow HM; Etchell AC; Garnett EO; Choo AL; Kessler D; Welsh RC; Sripada C
    J Fluency Disord; 2018 Mar; 55():46-67. PubMed ID: 28214015
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Using the OASES-A to illustrate how network analysis can be applied to understand the experience of stuttering.
    Siew CS; Pelczarski KM; Yaruss JS; Vitevitch MS
    J Commun Disord; 2017; 65():1-9. PubMed ID: 27907811
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Stuttering, induced fluency, and natural fluency: a hierarchical series of activation likelihood estimation meta-analyses.
    Budde KS; Barron DS; Fox PT
    Brain Lang; 2014 Dec; 139():99-107. PubMed ID: 25463820
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Self-efficacy and quality of life in adults who stutter.
    Carter A; Breen L; Yaruss JS; Beilby J
    J Fluency Disord; 2017 Dec; 54():14-23. PubMed ID: 29195624
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Shifted dynamic interactions between subcortical nuclei and inferior frontal gyri during response preparation in persistent developmental stuttering.
    Metzger FL; Auer T; Helms G; Paulus W; Frahm J; Sommer M; Neef NE
    Brain Struct Funct; 2018 Jan; 223(1):165-182. PubMed ID: 28741037
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The experience of stuttering among Ultra-Orthodox and Secular/Traditional Jews.
    Freud D; Ezrati-Vinacour R; Katz-Bernstein N; Fostick L
    J Fluency Disord; 2017 Dec; 54():24-34. PubMed ID: 29195625
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Diffusion imaging of cerebral white matter in persons who stutter: evidence for network-level anomalies.
    Cai S; Tourville JA; Beal DS; Perkell JS; Guenther FH; Ghosh SS
    Front Hum Neurosci; 2014; 8():54. PubMed ID: 24611042
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.