BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

247 related articles for article (PubMed ID: 25352853)

  • 1. Rho family GTPase-dependent immunity in plants and animals.
    Kawano Y; Kaneko-Kawano T; Shimamoto K
    Front Plant Sci; 2014; 5():522. PubMed ID: 25352853
    [TBL] [Abstract][Full Text] [Related]  

  • 2. SWAP70 functions as a Rac/Rop guanine nucleotide-exchange factor in rice.
    Yamaguchi K; Imai K; Akamatsu A; Mihashi M; Hayashi N; Shimamoto K; Kawasaki T
    Plant J; 2012 May; 70(3):389-97. PubMed ID: 22142166
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Analysis of the Rac/Rop small GTPase family in rice: expression, subcellular localization and role in disease resistance.
    Chen L; Shiotani K; Togashi T; Miki D; Aoyama M; Wong HL; Kawasaki T; Shimamoto K
    Plant Cell Physiol; 2010 Apr; 51(4):585-95. PubMed ID: 20203239
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Inhibition of protein prenylation by bisphosphonates causes sustained activation of Rac, Cdc42, and Rho GTPases.
    Dunford JE; Rogers MJ; Ebetino FH; Phipps RJ; Coxon FP
    J Bone Miner Res; 2006 May; 21(5):684-94. PubMed ID: 16734383
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Small GTPase 'Rop': molecular switch for plant defense responses.
    Agrawal GK; Iwahashi H; Rakwal R
    FEBS Lett; 2003 Jul; 546(2-3):173-80. PubMed ID: 12832035
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A RHOse by any other name: a comparative analysis of animal and plant Rho GTPases.
    Brembu T; Winge P; Bones AM; Yang Z
    Cell Res; 2006 May; 16(5):435-45. PubMed ID: 16699539
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Actin-depolymerizing factor mediates Rac/Rop GTPase-regulated pollen tube growth.
    Chen CY; Cheung AY; Wu HM
    Plant Cell; 2003 Jan; 15(1):237-49. PubMed ID: 12509534
    [TBL] [Abstract][Full Text] [Related]  

  • 8. In vivo Rac/Rop localization as well as interaction with RhoGAP and RhoGDI in tobacco pollen tubes: analysis by low-level expression of fluorescent fusion proteins and bimolecular fluorescence complementation.
    Sun J; Eklund DM; Montes-Rodriguez A; Kost B
    Plant J; 2015 Oct; 84(1):83-98. PubMed ID: 26252733
    [TBL] [Abstract][Full Text] [Related]  

  • 9. New insights into Rho signaling from plant ROP/Rac GTPases.
    Craddock C; Lavagi I; Yang Z
    Trends Cell Biol; 2012 Sep; 22(9):492-501. PubMed ID: 22795444
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A new family of RhoGEFs activates the Rop molecular switch in plants.
    Berken A; Thomas C; Wittinghofer A
    Nature; 2005 Aug; 436(7054):1176-80. PubMed ID: 15980860
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A novel ROP/RAC GTPase effector integrates plant cell form and pattern formation.
    Bloch D; Hazak O; Lavy M; Yalovsky S
    Plant Signal Behav; 2008 Jan; 3(1):41-3. PubMed ID: 19704766
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A cysteine-rich receptor-like kinase NCRK and a pathogen-induced protein kinase RBK1 are Rop GTPase interactors.
    Molendijk AJ; Ruperti B; Singh MK; Dovzhenko A; Ditengou FA; Milia M; Westphal L; Rosahl S; Soellick TR; Uhrig J; Weingarten L; Huber M; Palme K
    Plant J; 2008 Mar; 53(6):909-23. PubMed ID: 18088316
    [TBL] [Abstract][Full Text] [Related]  

  • 13. New insights into the dimerization of small GTPase Rac/ROP guanine nucleotide exchange factors in rice.
    Akamatsu A; Uno K; Kato M; Wong HL; Shimamoto K; Kawano Y
    Plant Signal Behav; 2015; 10(7):e1044702. PubMed ID: 26251883
    [TBL] [Abstract][Full Text] [Related]  

  • 14. ROP/RAC GTPase: an old new master regulator for plant signaling.
    Gu Y; Wang Z; Yang Z
    Curr Opin Plant Biol; 2004 Oct; 7(5):527-36. PubMed ID: 15337095
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Extracellular signals and receptor-like kinases regulating ROP GTPases in plants.
    Miyawaki KN; Yang Z
    Front Plant Sci; 2014; 5():449. PubMed ID: 25295042
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Physcomitrella patens: a model to investigate the role of RAC/ROP GTPase signalling in tip growth.
    Eklund DM; Svensson EM; Kost B
    J Exp Bot; 2010 Apr; 61(7):1917-37. PubMed ID: 20368308
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The Rop GTPase switch controls multiple developmental processes in Arabidopsis.
    Li H; Shen JJ; Zheng ZL; Lin Y; Yang Z
    Plant Physiol; 2001 Jun; 126(2):670-84. PubMed ID: 11402196
    [TBL] [Abstract][Full Text] [Related]  

  • 18. RAC/ROP GTPases: 'hubs' for signal integration and diversification in plants.
    Nibau C; Wu HM; Cheung AY
    Trends Plant Sci; 2006 Jun; 11(6):309-15. PubMed ID: 16737841
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Purification, crystallization and preliminary X-ray crystallographic analysis of a rice Rac/Rop GTPase, OsRac1.
    Kosami K; Ohki I; Hayashi K; Tabata R; Usugi S; Kawasaki T; Fujiwara T; Nakagawa A; Shimamoto K; Kojima C
    Acta Crystallogr F Struct Biol Commun; 2014 Jan; 70(Pt 1):113-5. PubMed ID: 24419631
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The role of prenylated small GTP-binding proteins in the regulation of osteoclast function.
    Coxon FP; Rogers MJ
    Calcif Tissue Int; 2003 Jan; 72(1):80-4. PubMed ID: 12370802
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.