BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

386 related articles for article (PubMed ID: 25353109)

  • 1. Induced ice melting by the snow flea antifreeze protein from molecular dynamics simulations.
    Todde G; Whitman C; Hovmöller S; Laaksonen A
    J Phys Chem B; 2014 Nov; 118(47):13527-34. PubMed ID: 25353109
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Influence of antifreeze proteins on the ice/water interface.
    Todde G; Hovmöller S; Laaksonen A
    J Phys Chem B; 2015 Feb; 119(8):3407-13. PubMed ID: 25611783
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Will It Be Beneficial To Simulate the Antifreeze Proteins at Ice Freezing Condition or at Lower Temperature?
    Kar RK; Bhunia A
    J Phys Chem B; 2015 Sep; 119(35):11485-95. PubMed ID: 26287639
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structural basis for the superior activity of the large isoform of snow flea antifreeze protein.
    Mok YF; Lin FH; Graham LA; Celik Y; Braslavsky I; Davies PL
    Biochemistry; 2010 Mar; 49(11):2593-603. PubMed ID: 20158269
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Interaction of Tenebrio Molitor Antifreeze Protein with Ice Crystal: Insights from Molecular Dynamics Simulations.
    Ramya L; Ramakrishnan V
    Mol Inform; 2016 Jul; 35(6-7):268-77. PubMed ID: 27492241
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Local ice melting by an antifreeze protein.
    Calvaresi M; Höfinger S; Zerbetto F
    Biomacromolecules; 2012 Jul; 13(7):2046-52. PubMed ID: 22657839
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The biological function of an insect antifreeze protein simulated by molecular dynamics.
    Kuiper MJ; Morton CJ; Abraham SE; Gray-Weale A
    Elife; 2015 May; 4():. PubMed ID: 25951514
    [TBL] [Abstract][Full Text] [Related]  

  • 8. High water mobility on the ice-binding surface of a hyperactive antifreeze protein.
    Modig K; Qvist J; Marshall CB; Davies PL; Halle B
    Phys Chem Chem Phys; 2010 Sep; 12(35):10189-97. PubMed ID: 20668761
    [TBL] [Abstract][Full Text] [Related]  

  • 9. When are antifreeze proteins in solution essential for ice growth inhibition?
    Drori R; Davies PL; Braslavsky I
    Langmuir; 2015 Jun; 31(21):5805-11. PubMed ID: 25946514
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Growth inhibition mechanism of an ice-water interface by a mutant of winter flounder antifreeze protein: a molecular dynamics study.
    Nada H; Furukawa Y
    J Phys Chem B; 2008 Jun; 112(23):7111-9. PubMed ID: 18476736
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Superheating of ice crystals in antifreeze protein solutions.
    Celik Y; Graham LA; Mok YF; Bar M; Davies PL; Braslavsky I
    Proc Natl Acad Sci U S A; 2010 Mar; 107(12):5423-8. PubMed ID: 20215465
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Crystal waters on the nine polyproline type II helical bundle springtail antifreeze protein from Granisotoma rainieri match the ice lattice.
    Scholl CL; Tsuda S; Graham LA; Davies PL
    FEBS J; 2021 Jul; 288(14):4332-4347. PubMed ID: 33460499
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Intermediate activity of midge antifreeze protein is due to a tyrosine-rich ice-binding site and atypical ice plane affinity.
    Basu K; Wasserman SS; Jeronimo PS; Graham LA; Davies PL
    FEBS J; 2016 Apr; 283(8):1504-15. PubMed ID: 26896764
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of hydrophobic and hydrogen-bond interactions on the binding affinity of antifreeze proteins to specific ice planes.
    Lee H
    J Mol Graph Model; 2019 Mar; 87():48-55. PubMed ID: 30502671
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The mechanism by which fish antifreeze proteins cause thermal hysteresis.
    Kristiansen E; Zachariassen KE
    Cryobiology; 2005 Dec; 51(3):262-80. PubMed ID: 16140290
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Revealing Surface Waters on an Antifreeze Protein by Fusion Protein Crystallography Combined with Molecular Dynamic Simulations.
    Sun T; Gauthier SY; Campbell RL; Davies PL
    J Phys Chem B; 2015 Oct; 119(40):12808-15. PubMed ID: 26371748
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The basis for hyperactivity of antifreeze proteins.
    Scotter AJ; Marshall CB; Graham LA; Gilbert JA; Garnham CP; Davies PL
    Cryobiology; 2006 Oct; 53(2):229-39. PubMed ID: 16887111
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hydration behavior at the ice-binding surface of the Tenebrio molitor antifreeze protein.
    Midya US; Bandyopadhyay S
    J Phys Chem B; 2014 May; 118(18):4743-52. PubMed ID: 24725212
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Optimum Number of Anchored Clathrate Water and Its Instantaneous Fluctuations Dictate Ice Plane Recognition Specificities of Insect Antifreeze Protein.
    Chakraborty S; Jana B
    J Phys Chem B; 2018 Mar; 122(12):3056-3067. PubMed ID: 29510055
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structure and function of antifreeze proteins.
    Davies PL; Baardsnes J; Kuiper MJ; Walker VK
    Philos Trans R Soc Lond B Biol Sci; 2002 Jul; 357(1423):927-35. PubMed ID: 12171656
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 20.