BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

83 related articles for article (PubMed ID: 25353265)

  • 1. Loss of expression of 5-hydroxymethylcytosine in CD30-positive cutaneous lymphoproliferative disorders.
    De Souza A; Tinguely M; Pfaltz M; Burghart DR; Kempf W
    J Cutan Pathol; 2014 Dec; 41(12):901-6. PubMed ID: 25353265
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Decrease of 5-hydroxymethylcytosine in primary cutaneous CD4
    Hu J; Zhang X; Zhao L; Zhao Q; Geng S
    An Bras Dermatol; 2024; 99(1):27-33. PubMed ID: 37657958
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Risk of systemic lymphoma in patients with cutaneous CD30+ lymphoproliferative disorders: A single center retrospective cohort analysis.
    Chen J; Martinez A; Shinohara MM
    J Am Acad Dermatol; 2024 Mar; ():. PubMed ID: 38490370
    [No Abstract]   [Full Text] [Related]  

  • 4. CD30+ Cutaneous Anaplastic Large-Cell Lymphoma of the Upper Eyelid: A Case Report.
    Olivier S; Dachelet C; Theate I; Tromme I; Baeck M
    Case Rep Dermatol; 2017; 9(3):206-210. PubMed ID: 29282393
    [TBL] [Abstract][Full Text] [Related]  

  • 5. AGENT ORANGE-INDUCED Anaplastic Large-Cell Lymphoma (ALCL) with Cutaneous Involvement.
    Lorio M; Lewis B; Hoy J; Yeager M
    Clin Case Rep; 2021 Apr; 9(4):2373-2381. PubMed ID: 33936698
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Endonuclease G preferentially cleaves 5-hydroxymethylcytosine-modified DNA creating a substrate for recombination.
    Robertson AB; Robertson J; Fusser M; Klungland A
    Nucleic Acids Res; 2014 Dec; 42(21):13280-93. PubMed ID: 25355512
    [TBL] [Abstract][Full Text] [Related]  

  • 7. 5-Hydroxymethylcytosine is a predominantly stable DNA modification.
    Bachman M; Uribe-Lewis S; Yang X; Williams M; Murrell A; Balasubramanian S
    Nat Chem; 2014 Dec; 6(12):1049-55. PubMed ID: 25411882
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Deregulation in STAT signaling is important for cutaneous T-cell lymphoma (CTCL) pathogenesis and cancer progression.
    Netchiporouk E; Litvinov IV; Moreau L; Gilbert M; Sasseville D; Duvic M
    Cell Cycle; 2014; 13(21):3331-5. PubMed ID: 25485578
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Simultaneous sequencing of oxidized methylcytosines produced by TET/JBP dioxygenases in Coprinopsis cinerea.
    Chavez L; Huang Y; Luong K; Agarwal S; Iyer LM; Pastor WA; Hench VK; Frazier-Bowers SA; Korol E; Liu S; Tahiliani M; Wang Y; Clark TA; Korlach J; Pukkila PJ; Aravind L; Rao A
    Proc Natl Acad Sci U S A; 2014 Dec; 111(48):E5149-58. PubMed ID: 25406324
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Essential role of IRF4 and MYC signaling for survival of anaplastic large cell lymphoma.
    Weilemann A; Grau M; Erdmann T; Merkel O; Sobhiafshar U; Anagnostopoulos I; Hummel M; Siegert A; Hayford C; Madle H; Wollert-Wulf B; Fichtner I; Dörken B; Dirnhofer S; Mathas S; Janz M; Emre NC; Rosenwald A; Ott G; Lenz P; Tzankov A; Lenz G
    Blood; 2015 Jan; 125(1):124-32. PubMed ID: 25359993
    [TBL] [Abstract][Full Text] [Related]  

  • 11. DNA hydroxymethylation profiling reveals that WT1 mutations result in loss of TET2 function in acute myeloid leukemia.
    Rampal R; Alkalin A; Madzo J; Vasanthakumar A; Pronier E; Patel J; Li Y; Ahn J; Abdel-Wahab O; Shih A; Lu C; Ward PS; Tsai JJ; Hricik T; Tosello V; Tallman JE; Zhao X; Daniels D; Dai Q; Ciminio L; Aifantis I; He C; Fuks F; Tallman MS; Ferrando A; Nimer S; Paietta E; Thompson CB; Licht JD; Mason CE; Godley LA; Melnick A; Figueroa ME; Levine RL
    Cell Rep; 2014 Dec; 9(5):1841-1855. PubMed ID: 25482556
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Role of 5-hydroxymethylcytosine level in diagnosis and prognosis prediction of intrahepatic cholangiocarcinoma.
    Dong ZR; Zhang C; Cai JB; Zhang PF; Shi GM; Gao DM; Sun HC; Qiu SJ; Zhou J; Ke AW; Fan J
    Tumour Biol; 2015 Apr; 36(4):2763-71. PubMed ID: 25480415
    [TBL] [Abstract][Full Text] [Related]  

  • 13. 5-Hydroxymethylcytosine and disease.
    Wang J; Tang J; Lai M; Zhang H
    Mutat Res Rev Mutat Res; 2014; 762():167-75. PubMed ID: 25475423
    [TBL] [Abstract][Full Text] [Related]  

  • 14. DNA methylation and demethylation as targets for antipsychotic therapy.
    Guidotti A; Grayson DR
    Dialogues Clin Neurosci; 2014 Sep; 16(3):419-29. PubMed ID: 25364290
    [TBL] [Abstract][Full Text] [Related]  

  • 15. TET proteins and 5-methylcytosine oxidation in hematological cancers.
    Ko M; An J; Pastor WA; Koralov SB; Rajewsky K; Rao A
    Immunol Rev; 2015 Jan; 263(1):6-21. PubMed ID: 25510268
    [TBL] [Abstract][Full Text] [Related]  

  • 16. 5-Hydroxymethylcytosine, the "Sixth Base", during brain development and ageing.
    Kraus TF; Guibourt V; Kretzschmar HA
    J Neural Transm (Vienna); 2015 Jul; 122(7):1035-43. PubMed ID: 25471351
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Anaplastic large cell lymphomas: ALK positive, ALK negative, and primary cutaneous.
    Xing X; Feldman AL
    Adv Anat Pathol; 2015 Jan; 22(1):29-49. PubMed ID: 25461779
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Quantification of 5-methylcytosine, 5-hydroxymethylcytosine and 5-carboxylcytosine from the blood of cancer patients by an enzyme-based immunoassay.
    Chowdhury B; Cho IH; Hahn N; Irudayaraj J
    Anal Chim Acta; 2014 Dec; 852():212-7. PubMed ID: 25441900
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of Tet-mediated oxidation products of 5-methylcytosine on DNA transcription in vitro and in mammalian cells.
    You C; Ji D; Dai X; Wang Y
    Sci Rep; 2014 Nov; 4():7052. PubMed ID: 25394478
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 5.