These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

299 related articles for article (PubMed ID: 25353468)

  • 1. Divergence of the long-wavelength collective diffusion coefficient in quasi-one- and quasi-two-dimensional colloidal suspensions.
    Lin B; Cui B; Xu X; Zangi R; Diamant H; Rice SA
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Feb; 89(2):022303. PubMed ID: 25353468
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Pair diffusion in quasi-one- and quasi-two-dimensional binary colloid suspensions.
    Valley DT; Rice SA; Cui B; Ho HM; Diamant H; Lin B
    J Chem Phys; 2007 Apr; 126(13):134908. PubMed ID: 17430068
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Long-range hydrodynamic correlations in quasi-one-dimensional circular and straight geometries.
    Kosheleva E; Leahy B; Diamant H; Lin B; Rice SA
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Oct; 86(4 Pt 1):041402. PubMed ID: 23214584
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structure and short-time dynamics in concentrated suspensions of charged colloids.
    Westermeier F; Fischer B; Roseker W; Grübel G; ägele G; Heinen M
    J Chem Phys; 2012 Sep; 137(11):114504. PubMed ID: 22998268
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Single-particle diffusion in dense inhomogeneous colloid suspensions in ribbon channels.
    Wonder E; Lin B; Rice SA
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Oct; 84(4 Pt 1):041403. PubMed ID: 22181142
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hydrodynamic interactions in quasi-two-dimensional colloidal suspensions.
    Santana-Solano J; Arauz-Lara JL
    Phys Rev Lett; 2001 Jul; 87(3):038302. PubMed ID: 11461596
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hydrodynamic interactions in ribbon channels: from quasi-one-dimensional to quasi-two-dimensional behavior.
    Novikov S; Rice SA; Cui B; Diamant H; Lin B
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Sep; 82(3 Pt 1):031403. PubMed ID: 21230073
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Short-time dynamics of permeable particles in concentrated suspensions.
    Abade GC; Cichocki B; Ekiel-Jezewska ML; Nägele G; Wajnryb E
    J Chem Phys; 2010 Jan; 132(1):014503. PubMed ID: 20078168
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Short- and long-time diffusion and dynamic scaling in suspensions of charged colloidal particles.
    Banchio AJ; Heinen M; Holmqvist P; Nägele G
    J Chem Phys; 2018 Apr; 148(13):134902. PubMed ID: 29626910
    [TBL] [Abstract][Full Text] [Related]  

  • 10. 3D hydrodynamic interactions lead to divergences in 2D diffusion.
    Bleibel J; Domínguez A; Oettel M
    J Phys Condens Matter; 2015 May; 27(19):194113. PubMed ID: 25923320
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Influence of a depletion interaction on dynamical heterogeneity in a dense quasi-two-dimensional colloid liquid.
    Ho HM; Cui B; Repel S; Lin B; Rice SA
    J Chem Phys; 2004 Nov; 121(17):8627-34. PubMed ID: 15511189
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of Hydrodynamic Interactions on Self-Diffusion of Quasi-Two-Dimensional Colloidal Hard Spheres.
    Thorneywork AL; Rozas RE; Dullens RP; Horbach J
    Phys Rev Lett; 2015 Dec; 115(26):268301. PubMed ID: 26765032
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Freezing transition and correlated motion in a quasi-two-dimensional colloid suspension.
    Zangi R; Rice SA
    Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Dec; 68(6 Pt 1):061508. PubMed ID: 14754213
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Short-time dynamics of colloidal particles confined between two walls.
    Santana-Solano J; Arauz-Lara JL
    Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Feb; 65(2 Pt 1):021406. PubMed ID: 11863522
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Long-time self-diffusion in quasi-two-dimensional colloidal fluids of paramagnetic particles.
    Siboni NH; Thorneywork AL; Damm A; Dullens RPA; Horbach J
    Phys Rev E; 2020 Apr; 101(4-1):042609. PubMed ID: 32422843
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Colloid-colloid hydrodynamic interaction around a bend in a quasi-one-dimensional channel.
    Liepold C; Zarcone R; Heumann T; Rice SA; Lin B
    Phys Rev E; 2017 Jul; 96(1-1):012606. PubMed ID: 29347208
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hydrodynamic description of the long-time tails of the linear and rotational velocity autocorrelation functions of a particle in a confined geometry.
    Frydel D; Rice SA
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Dec; 76(6 Pt 1):061404. PubMed ID: 18233847
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Collective diffusion in charge-stabilized suspensions: concentration and salt effects.
    Gapinski J; Patkowski A; Banchio AJ; Holmqvist P; Meier G; Lettinga MP; Nägele G
    J Chem Phys; 2007 Mar; 126(10):104905. PubMed ID: 17362085
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Experimental observations of non-Gaussian behavior and stringlike cooperative dynamics in concentrated quasi-two-dimensional colloidal liquids.
    Marcus AH; Schofield J; Rice SA
    Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics; 1999 Nov; 60(5 Pt B):5725-36. PubMed ID: 11970468
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Influence of hydrodynamic coupling on the density dependence of quasi-one-dimensional diffusion.
    Xu X; Rice SA
    J Chem Phys; 2005 Jan; 122(2):024907. PubMed ID: 15638630
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.