These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

184 related articles for article (PubMed ID: 25353549)

  • 1. Exploring the distinction between experimental resonant modes and theoretical eigenmodes: from vibrating plates to laser cavities.
    Tuan PH; Wen CP; Yu YT; Liang HC; Huang KF; Chen YF
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Feb; 89(2):022911. PubMed ID: 25353549
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Exploring the resonant vibration of thin plates: Reconstruction of Chladni patterns and determination of resonant wave numbers.
    Tuan PH; Wen CP; Chiang PY; Yu YT; Liang HC; Huang KF; Chen YF
    J Acoust Soc Am; 2015 Apr; 137(4):2113-23. PubMed ID: 25920861
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Lamb wave source based on the resonant cavity of phononic-crystal plates.
    Sun JH; Wu TT
    IEEE Trans Ultrason Ferroelectr Freq Control; 2009 Jan; 56(1):121-8. PubMed ID: 19213638
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Exploring the Origin of Maximum Entropy States Relevant to Resonant Modes in Modern Chladni Plates.
    Shu YH; Tseng YC; Lai YH; Yu YT; Huang KF; Chen YF
    Entropy (Basel); 2022 Jan; 24(2):. PubMed ID: 35205510
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Manifesting the evolution of eigenstates from quantum billiards to singular billiards in the strongly coupled limit with a truncated basis by using RLC networks.
    Tuan PH; Liang HC; Tung JC; Chiang PY; Huang KF; Chen YF
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Dec; 92(6):062906. PubMed ID: 26764773
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Exploring vortex structures in orbital-angular-momentum beams generated from planar geometric modes with a mode converter.
    Tung JC; Liang HC; Lu TH; Huang KF; Chen YF
    Opt Express; 2016 Oct; 24(20):22796-22805. PubMed ID: 27828345
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Eigenmodes of triaxial ellipsoidal acoustical cavities with mixed boundary conditions.
    Willatzen M; Voon LC
    J Acoust Soc Am; 2004 Dec; 116(6):3279-83. PubMed ID: 15658679
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Observation of lasing modes with exotic localized wave patterns from astigmatic large-Fresnel-number cavities.
    Lu TH; Lin YC; Liang HC; Huang YJ; Chen YF; Huang KF
    Opt Lett; 2010 Feb; 35(3):345-7. PubMed ID: 20125716
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Point-driven modern Chladni figures with symmetry breaking.
    Tuan PH; Lai YH; Wen CP; Huang KF; Chen YF
    Sci Rep; 2018 Jul; 8(1):10844. PubMed ID: 30022128
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Modes of stable and unstable optical resonators.
    Bergstein L
    Appl Opt; 1968 Mar; 7(3):495-504. PubMed ID: 20068621
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Extracting trajectory equations of classical periodic orbits from the quantum eigenmodes in two-dimensional integrable billiards.
    Hsieh YH; Yu YT; Tuan PH; Tung JC; Huang KF; Chen YF
    Phys Rev E; 2017 Feb; 95(2-1):022214. PubMed ID: 28297938
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Generating high-power asymmetrical Laguerre-Gaussian modes and exploring topological charges distribution.
    Hsieh YH; Lai YH; Hsieh MX; Huang KF; Chen YF
    Opt Express; 2018 Nov; 26(24):31738-31749. PubMed ID: 30650755
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A Semi-Classical View on Epsilon-Near-Zero Resonant Tunneling Modes in Metal/Insulator/Metal Nanocavities.
    Caligiuri V; Palei M; Biffi G; Artyukhin S; Krahne R
    Nano Lett; 2019 May; 19(5):3151-3160. PubMed ID: 30920844
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Eigenmodes and symmetry selection mechanisms in circular large-aperture vertical-cavity surface-emitting lasers.
    Babushkin IV; Loiko NA; Ackemann T
    Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Jun; 69(6 Pt 2):066205. PubMed ID: 15244706
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Resonant modes of single silicon nanocavities excited by electron irradiation.
    Coenen T; van de Groep J; Polman A
    ACS Nano; 2013 Feb; 7(2):1689-98. PubMed ID: 23311326
    [TBL] [Abstract][Full Text] [Related]  

  • 16. High-power structured laser modes: direct generation of a vortex array.
    Chen YF; Ke HT; Tseng YC; Hsieh MX; Tung JC; Hsieh YH; Liang HC; Huang KF
    Opt Lett; 2020 Jul; 45(14):4096-4099. PubMed ID: 32667363
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The eigenmode perspective of NMR spin relaxation in proteins.
    Shapiro YE; Meirovitch E
    J Chem Phys; 2013 Dec; 139(22):225104. PubMed ID: 24329096
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Using eigenmodes to perform the inverse problem associated with resonant ultrasound spectroscopy.
    Farzbod F; Hurley DH
    IEEE Trans Ultrason Ferroelectr Freq Control; 2012 Nov; 59(11):2470-5. PubMed ID: 23192810
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Phononic plate waves.
    Wu TT; Hsu JC; Sun JH
    IEEE Trans Ultrason Ferroelectr Freq Control; 2011 Oct; 58(10):2146-61. PubMed ID: 21989878
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Spontaneous emission of an atom in a cavity with nonorthogonal eigenmodes.
    Cheng YJ
    Phys Rev Lett; 2006 Sep; 97(9):093601. PubMed ID: 17026361
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.