These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
221 related articles for article (PubMed ID: 25353565)
1. Boltzmann rovibrational collisional coarse-grained model for internal energy excitation and dissociation in hypersonic flows. Munafò A; Panesi M; Magin TE Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Feb; 89(2):023001. PubMed ID: 25353565 [TBL] [Abstract][Full Text] [Related]
2. Nonequilibrium shock-heated nitrogen flows using a rovibrational state-to-state method. Panesi M; Munafò A; Magin TE; Jaffe RL Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Jul; 90(1):013009. PubMed ID: 25122371 [TBL] [Abstract][Full Text] [Related]
3. Coupling of state-resolved rovibrational coarse-grain model for nitrogen to stochastic particle method for simulating internal energy excitation and dissociation. Torres E; Magin TE J Chem Phys; 2018 Nov; 149(17):174106. PubMed ID: 30408979 [TBL] [Abstract][Full Text] [Related]
4. Rovibrational internal energy transfer and dissociation of N2(1Σg+)-N(4S(u)) system in hypersonic flows. Panesi M; Jaffe RL; Schwenke DW; Magin TE J Chem Phys; 2013 Jan; 138(4):044312. PubMed ID: 23387589 [TBL] [Abstract][Full Text] [Related]
5. Nonequilibrium internal energy distributions during dissociation. Singh N; Schwartzentruber T Proc Natl Acad Sci U S A; 2018 Jan; 115(1):47-52. PubMed ID: 29255024 [TBL] [Abstract][Full Text] [Related]
6. Rovibrational internal energy transfer and dissociation of high-temperature oxygen mixture. Jo SM; Venturi S; Kim JG; Panesi M J Chem Phys; 2023 Feb; 158(6):064305. PubMed ID: 36792518 [TBL] [Abstract][Full Text] [Related]
7. Data-Inspired and Physics-Driven Model Reduction for Dissociation: Application to the O Venturi S; Sharma MP; Lopez B; Panesi M J Phys Chem A; 2020 Oct; 124(41):8359-8372. PubMed ID: 32886505 [TBL] [Abstract][Full Text] [Related]
8. Mutual effect of vibrational relaxation and chemical reactions in viscous multitemperature flows. Kustova EV; Oblapenko GP Phys Rev E; 2016 Mar; 93(3):033127. PubMed ID: 27078467 [TBL] [Abstract][Full Text] [Related]
9. Rovibrational energy transfer and dissociation in O2-O collisions. Andrienko DA; Boyd ID J Chem Phys; 2016 Mar; 144(10):104301. PubMed ID: 26979687 [TBL] [Abstract][Full Text] [Related]
10. Energy transfer models in nitrogen plasmas: analysis of N₂(X¹Σg⁺)-N(⁴S(u))-e⁻ interaction. Heritier KL; Jaffe RL; Laporta V; Panesi M J Chem Phys; 2014 Nov; 141(18):184302. PubMed ID: 25399142 [TBL] [Abstract][Full Text] [Related]
11. Coarse-grained modeling of thermochemical nonequilibrium using the multigroup maximum entropy quadratic formulation. Sharma MP; Liu Y; Panesi M Phys Rev E; 2020 Jan; 101(1-1):013307. PubMed ID: 32069613 [TBL] [Abstract][Full Text] [Related]
12. Non-Boltzmann vibrational energy distributions and coupling to dissociation rate. Singh N; Schwartzentruber T J Chem Phys; 2020 Jun; 152(22):224301. PubMed ID: 32534520 [TBL] [Abstract][Full Text] [Related]
13. Construction of a coarse-grain quasi-classical trajectory method. II. Comparison against the direct molecular simulation method. Macdonald RL; Grover MS; Schwartzentruber TE; Panesi M J Chem Phys; 2018 Feb; 148(5):054310. PubMed ID: 29421878 [TBL] [Abstract][Full Text] [Related]
14. Principal component analysis acceleration of rovibrational coarse-grain models for internal energy excitation and dissociation. Bellemans A; Parente A; Magin T J Chem Phys; 2018 Apr; 148(16):164107. PubMed ID: 29716206 [TBL] [Abstract][Full Text] [Related]
15. Two-temperature thermochemical nonequilibrium model based on the coarse-grained treatment of molecular vibrational states. Lv J; Hong Q; Wang X; Huang Y; Sun Q Phys Rev E; 2024 Sep; 110(3-2):035107. PubMed ID: 39425420 [TBL] [Abstract][Full Text] [Related]
16. Separation of time scale and coupling in the motion governed by the coarse-grained and fine degrees of freedom in a polypeptide backbone. Murarka RK; Liwo A; Scheraga HA J Chem Phys; 2007 Oct; 127(15):155103. PubMed ID: 17949219 [TBL] [Abstract][Full Text] [Related]
17. Characteristics of energy exchange between inter- and intramolecular degrees of freedom in crystalline 1,3,5-triamino-2,4,6-trinitrobenzene (TATB) with implications for coarse-grained simulations of shock waves in polyatomic molecular crystals. Kroonblawd MP; Sewell TD; Maillet JB J Chem Phys; 2016 Feb; 144(6):064501. PubMed ID: 26874491 [TBL] [Abstract][Full Text] [Related]
18. Adaptive coarse graining method for energy transfer and dissociation kinetics of polyatomic species. Sahai A; Lopez B; Johnston CO; Panesi M J Chem Phys; 2017 Aug; 147(5):054107. PubMed ID: 28789554 [TBL] [Abstract][Full Text] [Related]
19. Kinetics of Excited Oxygen Formation in Shock-Heated O Nations M; Wang S; Goldenstein CS; Davidson DF; Hanson RK J Phys Chem A; 2016 Oct; 120(42):8234-8243. PubMed ID: 27689820 [TBL] [Abstract][Full Text] [Related]
20. First-principle approach to rescale the dynamics of simulated coarse-grained macromolecular liquids. Lyubimov I; Guenza MG Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Sep; 84(3 Pt 1):031801. PubMed ID: 22060394 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]