These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

262 related articles for article (PubMed ID: 25353593)

  • 1. Vector spherical quasi-Gaussian vortex beams.
    Mitri FG
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Feb; 89(2):023205. PubMed ID: 25353593
    [TBL] [Abstract][Full Text] [Related]  

  • 2. High-order pseudo-Gaussian scalar acoustical beams.
    Mitri F
    IEEE Trans Ultrason Ferroelectr Freq Control; 2014 Jan; 61(1):191-6. PubMed ID: 24402906
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cylindrical quasi-Gaussian beams.
    Mitri FG
    Opt Lett; 2013 Nov; 38(22):4727-30. PubMed ID: 24322117
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mechanism of the quasi-zero axial acoustic radiation force experienced by elastic and viscoelastic spheres in the field of a quasi-Gaussian beam and particle tweezing.
    Mitri FG; Fellah ZE
    Ultrasonics; 2014 Jan; 54(1):351-7. PubMed ID: 23683798
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Interaction of a nondiffracting high-order Bessel (vortex) beam of fractional type alpha and integer order m with a rigid sphere: linear acoustic scattering and net instantaneous axial force.
    Mitri FG
    IEEE Trans Ultrason Ferroelectr Freq Control; 2010; 57(2):395-404. PubMed ID: 20178905
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Propagation of vector vortex beams through a turbulent atmosphere.
    Cheng W; Haus JW; Zhan Q
    Opt Express; 2009 Sep; 17(20):17829-36. PubMed ID: 19907570
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Self-accelerating self-trapped nonlinear beams of Maxwell's equations.
    Kaminer I; Nemirovsky J; Segev M
    Opt Express; 2012 Aug; 20(17):18827-35. PubMed ID: 23038522
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Vector wave analysis of an electromagnetic high-order Bessel vortex beam of fractional type α.
    Mitri FG
    Opt Lett; 2011 Mar; 36(5):606-8. PubMed ID: 21368922
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Penetration depth of focused beams in highly scattering media investigated with a numerical solution of Maxwell's equations in two dimensions.
    Elmaklizi A; Reitzle D; Brandes A; Kienle A
    J Biomed Opt; 2015 Jun; 20(6):065007. PubMed ID: 26112366
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Electromagnetic scattering by a uniaxial anisotropic sphere located in an off-axis Bessel beam.
    Qu T; Wu ZS; Shang QC; Li ZJ; Bai L
    J Opt Soc Am A Opt Image Sci Vis; 2013 Aug; 30(8):1661-9. PubMed ID: 24323227
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Axial acoustic radiation force on rigid oblate and prolate spheroids in Bessel vortex beams of progressive, standing and quasi-standing waves.
    Mitri FG
    Ultrasonics; 2017 Feb; 74():62-71. PubMed ID: 27723472
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Simulating the scanning of a focused beam through scattering media using a numerical solution of Maxwell's equations.
    Elmaklizi A; Schäfer J; Kienle A
    J Biomed Opt; 2014 Jul; 19(7):071404. PubMed ID: 24395650
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Control of the multifocal properties of composite vector beams in tightly focusing systems.
    Guo H; Sui G; Weng X; Dong X; Hu Q; Zhuang S
    Opt Express; 2011 Nov; 19(24):24067-77. PubMed ID: 22109432
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Polarization singularities of Gaussian vortex beams diffracted at a half-plane screen beyond the paraxial approximation.
    Luo Y; Lü B
    J Opt Soc Am A Opt Image Sci Vis; 2009 Sep; 26(9):1961-6. PubMed ID: 19721680
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Visualization of the birth of an optical vortex using diffraction from a triangular aperture.
    Mourka A; Baumgartl J; Shanor C; Dholakia K; Wright EM
    Opt Express; 2011 Mar; 19(7):5760-71. PubMed ID: 21451601
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Propagation of a partially coherent hollow vortex Gaussian beam through a paraxial ABCD optical system in turbulent atmosphere.
    Zhou G; Cai Y; Chu X
    Opt Express; 2012 Apr; 20(9):9897-910. PubMed ID: 22535082
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Partial-wave series expansions in spherical coordinates for the acoustic field of vortex beams generated from a finite circular aperture.
    Mitri F
    IEEE Trans Ultrason Ferroelectr Freq Control; 2014 Dec; 61(12):2089-97. PubMed ID: 25474783
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Far-field properties in two off-axis superimposed Laguerre-Gaussian beams beyond the paraxial approximation.
    Luo Y; Lü B
    J Opt Soc Am A Opt Image Sci Vis; 2010 Feb; 27(2):238-44. PubMed ID: 20126234
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Computation of radiation pressure force exerted on arbitrary shaped homogeneous particles by high-order Bessel vortex beams using MLFMA.
    Yang M; Wu Y; Ren KF; Sheng X
    Opt Express; 2016 Nov; 24(24):27979-27992. PubMed ID: 27906365
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Numerical study of the properties of optical vortex array laser tweezers.
    Kuo CF; Chu SC
    Opt Express; 2013 Nov; 21(22):26418-31. PubMed ID: 24216863
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.