These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

82 related articles for article (PubMed ID: 25353617)

  • 1. Crossover from tumbling to tank-treading-like motion in dense simulated suspensions of red blood cells.
    Krüger T; Gross M; Raabe D; Varnik F
    Soft Matter; 2013 Aug; 9(37):9008-15. PubMed ID: 25353617
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Tank-treading and tumbling frequencies of capsules and red blood cells.
    Yazdani AZ; Kalluri RM; Bagchi P
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Apr; 83(4 Pt 2):046305. PubMed ID: 21599293
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Red blood cells and other nonspherical capsules in shear flow: oscillatory dynamics and the tank-treading-to-tumbling transition.
    Skotheim JM; Secomb TW
    Phys Rev Lett; 2007 Feb; 98(7):078301. PubMed ID: 17359066
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of the natural state of an elastic cellular membrane on tank-treading and tumbling motions of a single red blood cell.
    Tsubota K; Wada S
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Jan; 81(1 Pt 1):011910. PubMed ID: 20365402
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Rheology of dense suspensions of elastic capsules: normal stresses, yield stress, jamming and confinement effects.
    Gross M; Krüger T; Varnik F
    Soft Matter; 2014 Jun; 10(24):4360-72. PubMed ID: 24796957
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Phase diagram and breathing dynamics of a single red blood cell and a biconcave capsule in dilute shear flow.
    Yazdani AZ; Bagchi P
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Aug; 84(2 Pt 2):026314. PubMed ID: 21929097
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Shear-induced gradient diffusivity of a red blood cell suspension: effects of cell dynamics from tumbling to tank-treading.
    Malipeddi AR; Sarkar K
    Soft Matter; 2021 Sep; 17(37):8523-8535. PubMed ID: 34499062
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Transition to tumbling and two regimes of tumbling motion of a vesicle in shear flow.
    Kantsler V; Steinberg V
    Phys Rev Lett; 2006 Jan; 96(3):036001. PubMed ID: 16486733
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Numerical study of viscosity and inertial effects on tank-treading and tumbling motions of vesicles under shear flow.
    Kim Y; Lai MC
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Dec; 86(6 Pt 2):066321. PubMed ID: 23368052
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dynamics of a single red blood cell in simple shear flow.
    Sinha K; Graham MD
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Oct; 92(4):042710. PubMed ID: 26565275
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Single-polymer dynamics of starch-like branched ring polymers in steady shear flow.
    Wang D; Wen X; Zhang D; Tan X; Tang J
    Int J Biol Macromol; 2023 Feb; 227():173-181. PubMed ID: 36535348
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Interplay between microdynamics and macrorheology in vesicle suspensions.
    Kaoui B; Jonk RJ; Harting J
    Soft Matter; 2014 Jul; 10(26):4735-42. PubMed ID: 24851823
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Lattice Boltzmann simulations on the tumbling to tank-treading transition: effects of membrane viscosity.
    Guglietta F; Behr M; Biferale L; Falcucci G; Sbragaglia M
    Philos Trans A Math Phys Eng Sci; 2021 Oct; 379(2208):20200395. PubMed ID: 34455835
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Two-dimensional simulation of red blood cell motion near a wall under a lateral force.
    Hariprasad DS; Secomb TW
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Nov; 90(5-1):053014. PubMed ID: 25493888
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Two-dimensional simulation of red blood cell deformation and lateral migration in microvessels.
    Secomb TW; Styp-Rekowska B; Pries AR
    Ann Biomed Eng; 2007 May; 35(5):755-65. PubMed ID: 17380392
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Intraerythrocytic parasites and red cell deformability: Plasmodium berghei and Babesia microti.
    Krogstad DJ; Sutera SP; Boylan CW; Gluzman IY; Qian ZF; Rao PR
    Blood Cells; 1991; 17(1):209-21; discussion 222-7. PubMed ID: 2018857
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Tank-treading, swinging, and tumbling of liquid-filled elastic capsules in shear flow.
    Sui Y; Low HT; Chew YT; Roy P
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Jan; 77(1 Pt 2):016310. PubMed ID: 18351937
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Three-dimensional numerical simulation of vesicle dynamics using a front-tracking method.
    Yazdani A; Bagchi P
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 May; 85(5 Pt 2):056308. PubMed ID: 23004863
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of excluded volume and hydrodynamic interaction on the deformation, orientation and motion of ring polymers in shear flow.
    Chen W; Zhao H; Liu L; Chen J; Li Y; An L
    Soft Matter; 2015 Jul; 11(26):5265-73. PubMed ID: 26053427
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dynamics of nearly spherical vesicles in an external flow.
    Lebedev VV; Turitsyn KS; Vergeles SS
    Phys Rev Lett; 2007 Nov; 99(21):218101. PubMed ID: 18233260
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.