BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

205 related articles for article (PubMed ID: 25353622)

  • 21. Annotating gene sets by mining large literature collections with protein networks.
    Wang S; Ma J; Yu MK; Zheng F; Huang EW; Han J; Peng J; Ideker T
    Pac Symp Biocomput; 2018; 23():602-613. PubMed ID: 29218918
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Integrative data-mining tools to link gene and function.
    El Yacoubi B; de Crécy-Lagard V
    Methods Mol Biol; 2014; 1101():43-66. PubMed ID: 24233777
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Disease gene prioritization using network and feature.
    Xie B; Agam G; Balasubramanian S; Xu J; Gilliam TC; Maltsev N; Börnigen D
    J Comput Biol; 2015 Apr; 22(4):313-23. PubMed ID: 25844670
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Bridging heterogeneous mutation data to enhance disease gene discovery.
    Zhou K; Wang Y; Bretonnel Cohen K; Kim JD; Ma X; Shen Z; Meng X; Xia J
    Brief Bioinform; 2021 Sep; 22(5):. PubMed ID: 33847357
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Integration of genetic variants and gene network for drug repurposing in colorectal cancer.
    Irham LM; Wong HS; Chou WH; Adikusuma W; Mugiyanto E; Huang WC; Chang WC
    Pharmacol Res; 2020 Nov; 161():105203. PubMed ID: 32950641
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Differential diagnosis of vacuolar myopathies in the NGS era.
    Mair D; Biskup S; Kress W; Abicht A; Brück W; Zechel S; Knop KC; Koenig FB; Tey S; Nikolin S; Eggermann K; Kurth I; Ferbert A; Weis J
    Brain Pathol; 2020 Sep; 30(5):877-896. PubMed ID: 32419263
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Targeted sequencing and integrative analysis to prioritize candidate genes in neurodevelopmental disorders.
    Zhang Y; Wang T; Wang Y; Xia K; Li J; Sun Z
    Mol Neurobiol; 2021 Aug; 58(8):3863-3873. PubMed ID: 33860439
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A genome-wide MeSH-based literature mining system predicts implicit gene-to-gene relationships and networks.
    Xiang Z; Qin T; Qin ZS; He Y
    BMC Syst Biol; 2013 Oct; 7 Suppl 3(Suppl 3):S9. PubMed ID: 24555475
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Congenital myopathies.
    Laing NG
    Curr Opin Neurol; 2007 Oct; 20(5):583-9. PubMed ID: 17885449
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Topological analysis of metabolic networks integrating co-segregating transcriptomes and metabolomes in type 2 diabetic rat congenic series.
    Dumas ME; Domange C; Calderari S; Martínez AR; Ayala R; Wilder SP; Suárez-Zamorano N; Collins SC; Wallis RH; Gu Q; Wang Y; Hue C; Otto GW; Argoud K; Navratil V; Mitchell SC; Lindon JC; Holmes E; Cazier JB; Nicholson JK; Gauguier D
    Genome Med; 2016 Sep; 8(1):101. PubMed ID: 27716393
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Heritable genotype contrast mining reveals novel gene associations specific to autism subgroups.
    Spencer M; Takahashi N; Chakraborty S; Miles J; Shyu CR
    J Biomed Inform; 2018 Jan; 77():50-61. PubMed ID: 29197649
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A prioritization analysis of disease association by data-mining of functional annotation of human genes.
    Taniya T; Tanaka S; Yamaguchi-Kabata Y; Hanaoka H; Yamasaki C; Maekawa H; Barrero RA; Lenhard B; Datta MW; Shimoyama M; Bumgarner R; Chakraborty R; Hopkinson I; Jia L; Hide W; Auffray C; Minoshima S; Imanishi T; Gojobori T
    Genomics; 2012 Jan; 99(1):1-9. PubMed ID: 22019378
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The prediction of candidate genes for cervix related cancer through gene ontology and graph theoretical approach.
    Hindumathi V; Kranthi T; Rao SB; Manimaran P
    Mol Biosyst; 2014 Jun; 10(6):1450-60. PubMed ID: 24647578
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Integrating genome-wide association study and methylation functional annotation data identified candidate genes and pathways for schizophrenia.
    Qi X; Guan F; Wen Y; Li P; Ma M; Cheng S; Zhang L; Liang C; Cheng B; Zhang F
    Prog Neuropsychopharmacol Biol Psychiatry; 2020 Jan; 96():109736. PubMed ID: 31425724
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Clinical massively parallel sequencing for the diagnosis of myopathies.
    Gorokhova S; Biancalana V; Lévy N; Laporte J; Bartoli M; Krahn M
    Rev Neurol (Paris); 2015; 171(6-7):558-71. PubMed ID: 26022190
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Whole-exome sequencing identifies novel pathogenic mutations and putative phenotype-influencing variants in Polish limb-girdle muscular dystrophy patients.
    Fichna JP; Macias A; Piechota M; Korostyński M; Potulska-Chromik A; Redowicz MJ; Zekanowski C
    Hum Genomics; 2018 Jul; 12(1):34. PubMed ID: 29970176
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Diagnostic yield of multi-gene panel for muscular dystrophies and other hereditary myopathies.
    Winckler PB; Chwal BC; Dos Santos MAR; Burguêz D; Polese-Bonatto M; Zanoteli E; Siebert M; Vairo FPE; Chaves MLF; Saute JAM
    Neurol Sci; 2022 Jul; 43(7):4473-4481. PubMed ID: 35175440
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Inferring disease and gene set associations with rank coherence in networks.
    Hwang T; Zhang W; Xie M; Liu J; Kuang R
    Bioinformatics; 2011 Oct; 27(19):2692-9. PubMed ID: 21824970
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Clinical phenotype-based gene prioritization: an initial study using semantic similarity and the human phenotype ontology.
    Masino AJ; Dechene ET; Dulik MC; Wilkens A; Spinner NB; Krantz ID; Pennington JW; Robinson PN; White PS
    BMC Bioinformatics; 2014 Jul; 15(1):248. PubMed ID: 25047600
    [TBL] [Abstract][Full Text] [Related]  

  • 40.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.