These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

206 related articles for article (PubMed ID: 25353694)

  • 21. Recent studies of laser science in paintings conservation and research.
    Pouli P; Selimis A; Georgiou S; Fotakis C
    Acc Chem Res; 2010 Jun; 43(6):771-81. PubMed ID: 20329718
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Raman identification of yellow synthetic organic pigments in modern and contemporary paintings: reference spectra and case studies.
    Ropret P; Centeno SA; Bukovec P
    Spectrochim Acta A Mol Biomol Spectrosc; 2008 Feb; 69(2):486-97. PubMed ID: 17590389
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Application of Raman spectroscopy and surface-enhanced Raman scattering to the analysis of synthetic dyes found in ballpoint pen inks.
    Geiman I; Leona M; Lombardi JR
    J Forensic Sci; 2009 Jul; 54(4):947-52. PubMed ID: 19457151
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Uncovering Art's Vanishing Hues with Surface-Enhanced Raman Scattering: Drawing Inspiration from the Past for the Future.
    Wustholz KL; Svoboda SA; Martin MG; Steinman BT; Zheng Z
    ACS Nano; 2024 Jul; 18(27):17369-17377. PubMed ID: 38922293
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Development of a multiplexed chemiluminescent immunochemical imaging technique for the simultaneous localization of different proteins in painting micro cross-sections.
    Sciutto G; Dolci LS; Buragina A; Prati S; Guardigli M; Mazzeo R; Roda A
    Anal Bioanal Chem; 2011 Mar; 399(9):2889-97. PubMed ID: 20936262
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Role of pH on Nanostructured SERS Active Substrates for Detection of Organic Dyes.
    Mollica Nardo V; Renda V; Trusso S; Ponterio RC
    Molecules; 2021 Apr; 26(8):. PubMed ID: 33921587
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Surface-enhanced Raman spectroscopy analysis of house paint and wallpaper samples from an 18th century historic property.
    Harroun SG; Bergman J; Jablonski E; Brosseau CL
    Analyst; 2011 Sep; 136(17):3453-60. PubMed ID: 21267481
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Effects of crime scene contaminants on surface-enhanced Raman analysis of hair.
    Juarez I; Kurouski D
    J Forensic Sci; 2023 Jan; 68(1):113-118. PubMed ID: 36317752
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Electrochemical surface-enhanced Raman spectroscopy (EC-SERS): a tool for the identification of polyphenolic components in natural lake pigments.
    Eisnor MM; McLeod KER; Bindesri S; Svoboda SA; Wustholz KL; Brosseau CL
    Phys Chem Chem Phys; 2021 Dec; 24(1):347-356. PubMed ID: 34889933
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Wall paintings studied using Raman spectroscopy: a comparative study between various assays of cross sections and external layers.
    Perez-Rodriguez JL; Robador MD; Centeno MA; Siguenza B; Duran A
    Spectrochim Acta A Mol Biomol Spectrosc; 2014; 120():602-9. PubMed ID: 24216251
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Immunodetection of proteins in ancient paint media.
    Cartechini L; Vagnini M; Palmieri M; Pitzurra L; Mello T; Mazurek J; Chiari G
    Acc Chem Res; 2010 Jun; 43(6):867-76. PubMed ID: 20438070
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Analytical Raman spectroscopic discrimination between yellow pigments of the Renaissance.
    Edwards HG
    Spectrochim Acta A Mol Biomol Spectrosc; 2011 Oct; 80(1):14-20. PubMed ID: 21296610
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Nondestructive identification of natural and synthetic organic colorants in works of art by surface enhanced Raman scattering.
    Leona M; Decuzzi P; Kubic TA; Gates G; Lombardi JR
    Anal Chem; 2011 Jun; 83(11):3990-3. PubMed ID: 21524144
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Silver nanoparticles doped agarose disk: highly sensitive surface-enhanced Raman scattering substrate for in situ analysis of ink dyes.
    Raza A; Saha B
    Forensic Sci Int; 2013 Dec; 233(1-3):21-7. PubMed ID: 24314497
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Surface-enhanced Raman spectroscopy enables highly accurate identification of different brands, types and colors of hair dyes.
    Higgins S; Kurouski D
    Talanta; 2023 Jan; 251():123762. PubMed ID: 35931011
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Optimizing use of the structural chemical analyser (variable pressure FESEM-EDX Raman spectroscopy) on micro-size complex historical paintings characterization.
    Guerra I; Cardell C
    J Microsc; 2015 Oct; 260(1):47-61. PubMed ID: 25974725
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A novel surface-enhanced Raman scattering sensor to detect prohibited colorants in food by graphene/silver nanocomposite.
    Xie Y; Li Y; Niu L; Wang H; Qian H; Yao W
    Talanta; 2012 Oct; 100():32-7. PubMed ID: 23141308
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Characterisation of a portable Raman spectrometer for in situ analysis of art objects.
    Lauwers D; Hutado AG; Tanevska V; Moens L; Bersani D; Vandenabeele P
    Spectrochim Acta A Mol Biomol Spectrosc; 2014 Jan; 118():294-301. PubMed ID: 24055678
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Structural examination of easel paintings with optical coherence tomography.
    Targowski P; Iwanicka M; TymiƄska-Widmer L; Sylwestrzak M; Kwiatkowska EA
    Acc Chem Res; 2010 Jun; 43(6):826-36. PubMed ID: 20043663
    [TBL] [Abstract][Full Text] [Related]  

  • 40. An analytical Raman spectroscopic study of an important english oil painting of the 18th Century.
    Edwards HG; Vandenabeele P; Jehlicka J; Benoy TJ
    Spectrochim Acta A Mol Biomol Spectrosc; 2014 Jan; 118():598-602. PubMed ID: 24095770
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.