These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
95 related articles for article (PubMed ID: 25353758)
1. Scaling analysis of negative differential thermal resistance. Chan HK; He D; Hu B Phys Rev E Stat Nonlin Soft Matter Phys; 2014 May; 89(5):052126. PubMed ID: 25353758 [TBL] [Abstract][Full Text] [Related]
2. Heat conduction in the nonlinear response regime: scaling, boundary jumps, and negative differential thermal resistance. He D; Ai BQ; Chan HK; Hu B Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Apr; 81(4 Pt 1):041131. PubMed ID: 20481701 [TBL] [Abstract][Full Text] [Related]
3. Nonlinear thermal conductance in single-wall carbon nanotubes: negative differential thermal resistance. Ai BQ; An M; Zhong WR J Chem Phys; 2013 Jan; 138(3):034708. PubMed ID: 23343294 [TBL] [Abstract][Full Text] [Related]
4. Double negative differential thermal resistance induced by nonlinear on-site potentials. Ai BQ; Zhong WR; Hu B Phys Rev E Stat Nonlin Soft Matter Phys; 2011 May; 83(5 Pt 1):052102. PubMed ID: 21728592 [TBL] [Abstract][Full Text] [Related]
5. Anomalous negative differential thermal resistance in a momentum-conserving lattice. Zhong WR; Zhang MP; Ai BQ; Hu B Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Sep; 84(3 Pt 1):031130. PubMed ID: 22060351 [TBL] [Abstract][Full Text] [Related]
6. Negative differential thermal resistance in one-dimensional hard-point gas models. Luo R Phys Rev E; 2019 Mar; 99(3-1):032138. PubMed ID: 30999545 [TBL] [Abstract][Full Text] [Related]
8. Transition from the exhibition to the nonexhibition of negative differential thermal resistance in the two-segment Frenkel-Kontorova model. Shao ZG; Yang L; Chan HK; Hu B Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Jun; 79(6 Pt 1):061119. PubMed ID: 19658485 [TBL] [Abstract][Full Text] [Related]
9. Heat current limiter and constant heat current source. Wu J; Wang L; Li B Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Jun; 85(6 Pt 1):061112. PubMed ID: 23005056 [TBL] [Abstract][Full Text] [Related]
10. Negative differential thermal resistance through nanoscale solid-fluid-solid sandwiched structures. Li F; Wang J; Xia G; Li Z Nanoscale; 2019 Jul; 11(27):13051-13057. PubMed ID: 31265030 [TBL] [Abstract][Full Text] [Related]
11. Scaling of temperature-dependent thermal conductivities for one-dimensional nonlinear lattices. Li N; Li B Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Apr; 87(4):042125. PubMed ID: 23679390 [TBL] [Abstract][Full Text] [Related]
12. Temperature-dependent thermal conductivities of one-dimensional nonlinear Klein-Gordon lattices with a soft on-site potential. Yang L; Li N; Li B Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Dec; 90(6):062122. PubMed ID: 25615059 [TBL] [Abstract][Full Text] [Related]
13. Thermal conductivity of anharmonic lattices: effective phonons and quantum corrections. He D; Buyukdagli S; Hu B Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Dec; 78(6 Pt 1):061103. PubMed ID: 19256798 [TBL] [Abstract][Full Text] [Related]
14. Thermal rectification and negative differential thermal resistance in a driven two segment classical Heisenberg chain. Bagchi D J Phys Condens Matter; 2013 Dec; 25(49):496006. PubMed ID: 24195913 [TBL] [Abstract][Full Text] [Related]
15. Heat conduction in deformable Frenkel-Kontorova lattices: thermal conductivity and negative differential thermal resistance. Ai BQ; Hu B Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Jan; 83(1 Pt 1):011131. PubMed ID: 21405685 [TBL] [Abstract][Full Text] [Related]
16. Molecular dynamics simulations of thermal resistance at the liquid-solid interface. Kim BH; Beskok A; Cagin T J Chem Phys; 2008 Nov; 129(17):174701. PubMed ID: 19045364 [TBL] [Abstract][Full Text] [Related]
17. Existence of negative differential thermal conductance in one-dimensional diffusive thermal transport. Hu J; Chen YP Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Jun; 87(6):062104. PubMed ID: 23848624 [TBL] [Abstract][Full Text] [Related]
18. Thermal conductivity of simple liquids: temperature and packing-fraction dependence. Ohtori N; Ishii Y; Togawa Y; Oono T; Takase K Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Feb; 89(2):022129. PubMed ID: 25353444 [TBL] [Abstract][Full Text] [Related]
19. Interfacial thermal conduction and negative temperature jump in one-dimensional lattices. Cao X; He D Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Sep; 92(3):032135. PubMed ID: 26465454 [TBL] [Abstract][Full Text] [Related]
20. Excess free energy and Casimir forces in systems with long-range interactions of van der Waals type: general considerations and exact spherical-model results. Dantchev D; Diehl HW; Grüneberg D Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Jan; 73(1 Pt 2):016131. PubMed ID: 16486240 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]