These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 25353803)

  • 1. Relaxation of polar order in suspensions with Quincke effect.
    Belovs M; Cēbers A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 May; 89(5):052310. PubMed ID: 25353803
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Electrohydrodynamic interaction of spherical particles under Quincke rotation.
    Das D; Saintillan D
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Apr; 87(4):043014. PubMed ID: 23679520
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Poiseuille flow of a Quincke suspension.
    Cēbers A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Sep; 90(3):032305. PubMed ID: 25314444
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dipole interaction of the Quincke rotating particles.
    Dolinsky Y; Elperin T
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Feb; 85(2 Pt 2):026608. PubMed ID: 22463350
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Size effect in Quincke rotation: a numerical study.
    Peters F; Lobry L; Khayari A; Lemaire E
    J Chem Phys; 2009 May; 130(19):194905. PubMed ID: 19466864
    [TBL] [Abstract][Full Text] [Related]  

  • 6. DC conductivity of a suspension of insulating particles with internal rotation.
    Pannacci N; Lemaire E; Lobry L
    Eur Phys J E Soft Matter; 2009 Apr; 28(4):411-7. PubMed ID: 19337763
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Quincke rotor dynamics in confinement: rolling and hovering.
    Pradillo GE; Karani H; Vlahovska PM
    Soft Matter; 2019 Aug; 15(32):6564-6570. PubMed ID: 31360980
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Rotational Brownian motion of axisymmetric particles in a Maxwell fluid.
    Volkov VS; Leonov AI
    Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Nov; 64(5 Pt 1):051113. PubMed ID: 11735906
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Metal speciation dynamics in soft colloidal ligand suspensions. Electrostatic and site distribution aspects.
    Duval JF
    J Phys Chem A; 2009 Mar; 113(11):2275-93. PubMed ID: 19281140
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Electrokinetic effects in nematic suspensions: Single-particle electro-osmosis and interparticle interactions.
    Conklin C; Tovkach OM; Viñals J; Calderer MC; Golovaty D; Lavrentovich OD; Walkington NJ
    Phys Rev E; 2018 Aug; 98(2-1):022703. PubMed ID: 30253587
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Transient nonlinear dielectric relaxation and dynamic Kerr effect from sudden changes of a strong dc electric field: polar and polarizable molecules.
    Déjardin JL; Déjardin PM; Kalmykov YP; Titov SV
    Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics; 1999 Aug; 60(2 Pt A):1475-85. PubMed ID: 11969906
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Active Particles Powered by Quincke Rotation in a Bulk Fluid.
    Das D; Lauga E
    Phys Rev Lett; 2019 May; 122(19):194503. PubMed ID: 31144962
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Molecular dynamics study of nanoconfined water flow driven by rotating electric fields under realistic experimental conditions.
    De Luca S; Todd BD; Hansen JS; Daivis PJ
    Langmuir; 2014 Mar; 30(11):3095-109. PubMed ID: 24575940
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Electrical conductivity of aqueous salt-free concentrated suspensions. Effects of water dissociation and CO2 contamination.
    Carrique F; Ruiz-Reina E
    J Phys Chem B; 2009 Jul; 113(30):10261-70. PubMed ID: 19580303
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Recent developments in the kinetic theory of nucleation.
    Ruckenstein E; Djikaev YS
    Adv Colloid Interface Sci; 2005 Dec; 118(1-3):51-72. PubMed ID: 16137628
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Anomalous nonlinear dielectric and Kerr effect relaxation steady state responses in superimposed ac and dc electric fields.
    Coffey WT; Kalmykov YP; Titov SV
    J Chem Phys; 2007 Feb; 126(8):084502. PubMed ID: 17343453
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Anomalous particle rotation and resulting microstructure of colloids in AC electric fields.
    Lele PP; Mittal M; Furst EM
    Langmuir; 2008 Nov; 24(22):12842-8. PubMed ID: 18950210
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Surfactant solutions and porous substrates: spreading and imbibition.
    Starov VM
    Adv Colloid Interface Sci; 2004 Nov; 111(1-2):3-27. PubMed ID: 15571660
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dielectric response of particles in flowing media: the effect of shear-induced rotation on the variation in particle polarizability.
    Nikolic-Jaric M; Ferrier GA; Thomson DJ; Bridges GE; Freeman MR
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Jul; 84(1 Pt 1):011922. PubMed ID: 21867228
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Molecular theory of dielectric relaxation in nematic dimers.
    Stocchero M; Ferrarini A; Moro GJ; Dunmur DA; Luckhurst GR
    J Chem Phys; 2004 Oct; 121(16):8079-97. PubMed ID: 15485272
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.